Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20i Unicode version

Theorem cdleme20i 30845
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We show (f(s)  \/ s2)  /\ (f(t)  \/ t2)  <_ p  \/ q. (Contributed by NM, 18-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20i  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( F 
.\/  D )  ./\  ( G  .\/  Y ) )  .<_  ( P  .\/  Q ) )

Proof of Theorem cdleme20i
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp22 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
3 simp23 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
4 simp21 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5 simp31 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( P  =/= 
Q  /\  S  =/=  T ) )
6 simp321 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
7 simp322 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
86, 7jca 519 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )
9 simp323 1109 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  R  .<_  ( P 
.\/  Q ) )
105, 8, 93jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  R  .<_  ( P 
.\/  Q ) ) )
11 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
12 cdleme19.j . . . 4  |-  .\/  =  ( join `  K )
13 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
14 cdleme19.a . . . 4  |-  A  =  ( Atoms `  K )
15 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
16 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
17 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
18 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
19 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
20 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
21 cdleme20.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  W )
2211, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21cdleme20f 30842 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q ) )  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( ( F  .\/  D )  ./\  ( G  .\/  Y ) )  .<_  ( ( ( D 
.\/  S )  ./\  ( Y  .\/  T ) )  .\/  ( ( S  .\/  F ) 
./\  ( T  .\/  G ) ) ) )
231, 2, 3, 4, 10, 22syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( F 
.\/  D )  ./\  ( G  .\/  Y ) )  .<_  ( (
( D  .\/  S
)  ./\  ( Y  .\/  T ) )  .\/  ( ( S  .\/  F )  ./\  ( T  .\/  G ) ) ) )
2411, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21cdleme20h 30844 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( ( S  .\/  R ) 
./\  ( T  .\/  R ) )  .\/  (
( S  .\/  U
)  ./\  ( T  .\/  U ) ) )  =  ( R  .\/  U ) )
2511, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21cdleme20g 30843 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q ) )  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( ( ( D 
.\/  S )  ./\  ( Y  .\/  T ) )  .\/  ( ( S  .\/  F ) 
./\  ( T  .\/  G ) ) )  =  ( ( ( S 
.\/  R )  ./\  ( T  .\/  R ) )  .\/  ( ( S  .\/  U ) 
./\  ( T  .\/  U ) ) ) )
261, 2, 3, 4, 10, 25syl131anc 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( ( D  .\/  S ) 
./\  ( Y  .\/  T ) )  .\/  (
( S  .\/  F
)  ./\  ( T  .\/  G ) ) )  =  ( ( ( S  .\/  R ) 
./\  ( T  .\/  R ) )  .\/  (
( S  .\/  U
)  ./\  ( T  .\/  U ) ) ) )
27 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simp12l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  P  e.  A
)
29 simp13l 1072 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  Q  e.  A
)
3011, 12, 13, 14, 15, 16cdleme4 30766 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
3127, 28, 29, 4, 9, 30syl131anc 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
3224, 26, 313eqtr4d 2472 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( ( D  .\/  S ) 
./\  ( Y  .\/  T ) )  .\/  (
( S  .\/  F
)  ./\  ( T  .\/  G ) ) )  =  ( P  .\/  Q ) )
3323, 32breqtrd 4223 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  ( ( F 
.\/  D )  ./\  ( G  .\/  Y ) )  .<_  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2593   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   lecple 13519   joincjn 14384   meetcmee 14385   Atomscatm 29792   HLchlt 29879   LHypclh 30512
This theorem is referenced by:  cdleme20l  30850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-p1 14452  df-lat 14458  df-clat 14520  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880  df-llines 30026  df-lplanes 30027  df-lvols 30028  df-lines 30029  df-psubsp 30031  df-pmap 30032  df-padd 30324  df-lhyp 30516
  Copyright terms: Public domain W3C validator