Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20zN Unicode version

Theorem cdleme20zN 29769
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme20z.l  |-  .<_  =  ( le `  K )
cdleme20z.j  |-  .\/  =  ( join `  K )
cdleme20z.m  |-  ./\  =  ( meet `  K )
cdleme20z.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme20zN  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  R )  ./\  T )  =  ( 0. `  K ) )

Proof of Theorem cdleme20zN
StepHypRef Expression
1 hllat 28832 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 976 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  Lat )
3 simp1 955 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  HL )
4 simp22 989 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  e.  A )
5 simp21 988 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  R  e.  A )
6 eqid 2284 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
7 cdleme20z.j . . . . 5  |-  .\/  =  ( join `  K )
8 cdleme20z.a . . . . 5  |-  A  =  ( Atoms `  K )
96, 7, 8hlatjcl 28835 . . . 4  |-  ( ( K  e.  HL  /\  S  e.  A  /\  R  e.  A )  ->  ( S  .\/  R
)  e.  ( Base `  K ) )
103, 4, 5, 9syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( S  .\/  R
)  e.  ( Base `  K ) )
11 simp23 990 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  T  e.  A )
126, 8atbase 28758 . . . 4  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1311, 12syl 15 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  T  e.  ( Base `  K ) )
14 cdleme20z.m . . . 4  |-  ./\  =  ( meet `  K )
156, 14latmcom 14177 . . 3  |-  ( ( K  e.  Lat  /\  ( S  .\/  R )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( ( S  .\/  R )  ./\  T )  =  ( T 
./\  ( S  .\/  R ) ) )
162, 10, 13, 15syl3anc 1182 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  R )  ./\  T )  =  ( T  ./\  ( S  .\/  R ) ) )
17 simp3r 984 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  R  .<_  ( S 
.\/  T ) )
18 hlcvl 28828 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CvLat )
19183ad2ant1 976 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  CvLat )
20 simp3l 983 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  =/=  T )
2120necomd 2530 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  T  =/=  S )
22 cdleme20z.l . . . . . 6  |-  .<_  =  ( le `  K )
2322, 7, 8cvlatexch1 28805 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( T  e.  A  /\  R  e.  A  /\  S  e.  A )  /\  T  =/=  S
)  ->  ( T  .<_  ( S  .\/  R
)  ->  R  .<_  ( S  .\/  T ) ) )
2419, 11, 5, 4, 21, 23syl131anc 1195 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( T  .<_  ( S 
.\/  R )  ->  R  .<_  ( S  .\/  T ) ) )
2517, 24mtod 168 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  T  .<_  ( S 
.\/  R ) )
26 hlatl 28829 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
27263ad2ant1 976 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  AtLat )
28 eqid 2284 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
296, 22, 14, 28, 8atnle 28786 . . . 4  |-  ( ( K  e.  AtLat  /\  T  e.  A  /\  ( S  .\/  R )  e.  ( Base `  K
) )  ->  ( -.  T  .<_  ( S 
.\/  R )  <->  ( T  ./\  ( S  .\/  R
) )  =  ( 0. `  K ) ) )
3027, 11, 10, 29syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( -.  T  .<_  ( S  .\/  R )  <-> 
( T  ./\  ( S  .\/  R ) )  =  ( 0. `  K ) ) )
3125, 30mpbid 201 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( T  ./\  ( S  .\/  R ) )  =  ( 0. `  K ) )
3216, 31eqtrd 2316 1  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( S  =/=  T  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  R )  ./\  T )  =  ( 0. `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   0.cp0 14139   Latclat 14147   Atomscatm 28732   AtLatcal 28733   CvLatclc 28734   HLchlt 28819
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-lat 14148  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820
  Copyright terms: Public domain W3C validator