Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21a Unicode version

Theorem cdleme21a 29781
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme21a.l  |-  .<_  =  ( le `  K )
cdleme21a.j  |-  .\/  =  ( join `  K )
cdleme21a.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme21a  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  =/=  z )

Proof of Theorem cdleme21a
StepHypRef Expression
1 simp11 990 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  K  e.  HL )
2 hlcvl 28816 . . 3  |-  ( K  e.  HL  ->  K  e.  CvLat )
31, 2syl 17 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  K  e.  CvLat )
4 simp12 991 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  P  e.  A )
5 simp2l 986 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  e.  A )
6 simp3l 988 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
z  e.  A )
7 simp13 992 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  Q  e.  A )
8 simp2r 987 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
9 cdleme21a.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdleme21a.j . . . . 5  |-  .\/  =  ( join `  K )
11 cdleme21a.a . . . . 5  |-  A  =  ( Atoms `  K )
129, 10, 11atnlej1 28835 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  =/=  P )
1312necomd 2530 . . 3  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
141, 5, 4, 7, 8, 13syl131anc 1200 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  P  =/=  S )
15 simp3r 989 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( P  .\/  z
)  =  ( S 
.\/  z ) )
1611, 10cvlsupr6 28804 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  z  e.  A )  /\  ( P  =/=  S  /\  ( P  .\/  z
)  =  ( S 
.\/  z ) ) )  ->  z  =/=  S )
1716necomd 2530 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  z  e.  A )  /\  ( P  =/=  S  /\  ( P  .\/  z
)  =  ( S 
.\/  z ) ) )  ->  S  =/=  z )
183, 4, 5, 6, 14, 15, 17syl132anc 1205 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  =/=  z )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   lecple 13209   joincjn 14072   Atomscatm 28720   CvLatclc 28722   HLchlt 28807
This theorem is referenced by:  cdleme21ct  29785  cdleme21d  29786
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-join 14104  df-lat 14146  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808
  Copyright terms: Public domain W3C validator