Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21at Unicode version

Theorem cdleme21at 29776
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme21at  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  T  =/=  z
)

Proof of Theorem cdleme21at
StepHypRef Expression
1 cdleme21.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme21.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme21.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme21.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme21.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme21.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
71, 2, 3, 4, 5, 6cdleme21c 29775 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )
873adant2r 1182 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )
9 simp2r 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  .<_  ( S 
.\/  T ) )
10 oveq2 5801 . . . . 5  |-  ( T  =  z  ->  ( S  .\/  T )  =  ( S  .\/  z
) )
1110breq2d 4010 . . . 4  |-  ( T  =  z  ->  ( U  .<_  ( S  .\/  T )  <->  U  .<_  ( S 
.\/  z ) ) )
129, 11syl5ibcom 213 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( T  =  z  ->  U  .<_  ( S  .\/  z ) ) )
1312necon3bd 2458 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( -.  U  .<_  ( S  .\/  z
)  ->  T  =/=  z ) )
148, 13mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  U  .<_  ( S  .\/  T
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  T  =/=  z
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3998   ` cfv 5195  (class class class)co 5793   lecple 13179   joincjn 14042   meetcmee 14043   Atomscatm 28712   HLchlt 28799   LHypclh 29432
This theorem is referenced by:  cdleme21e  29779
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4106  ax-sep 4116  ax-nul 4124  ax-pow 4161  ax-pr 4187  ax-un 4485
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3541  df-pw 3602  df-sn 3621  df-pr 3622  df-op 3624  df-uni 3803  df-iun 3882  df-br 3999  df-opab 4053  df-mpt 4054  df-id 4282  df-xp 4668  df-rel 4669  df-cnv 4670  df-co 4671  df-dm 4672  df-rn 4673  df-res 4674  df-ima 4675  df-fun 5197  df-fn 5198  df-f 5199  df-f1 5200  df-fo 5201  df-f1o 5202  df-fv 5203  df-ov 5796  df-oprab 5797  df-mpt2 5798  df-1st 6057  df-2nd 6058  df-iota 6226  df-undef 6265  df-riota 6273  df-poset 14044  df-plt 14056  df-lub 14072  df-glb 14073  df-join 14074  df-meet 14075  df-p0 14109  df-p1 14110  df-lat 14116  df-clat 14178  df-oposet 28625  df-ol 28627  df-oml 28628  df-covers 28715  df-ats 28716  df-atl 28747  df-cvlat 28771  df-hlat 28800  df-lhyp 29436
  Copyright terms: Public domain W3C validator