Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21d Unicode version

Theorem cdleme21d 30812
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line.  D,  F,  N,  E,  B,  Z represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove fs(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21.b  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme21.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21.e  |-  E  =  ( ( R  .\/  z )  ./\  W
)
cdleme21d.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21d.z  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
Assertion
Ref Expression
cdleme21d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )

Proof of Theorem cdleme21d
StepHypRef Expression
1 simp11 987 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 988 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 989 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp2l 983 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
5 simp2r 984 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
6 simp33l 1084 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( z  e.  A  /\  -.  z  .<_  W ) )
7 simp31 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  P  =/=  Q )
8 simp11l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  K  e.  HL )
9 simp12l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  P  e.  A )
10 simp13l 1072 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  Q  e.  A )
11 simp2rl 1026 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  S  e.  A )
12 simp32l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
136simpld 446 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
z  e.  A )
14 simp33r 1085 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  .\/  z
)  =  ( S 
.\/  z ) )
15 cdleme21.l . . . . 5  |-  .<_  =  ( le `  K )
16 cdleme21.j . . . . 5  |-  .\/  =  ( join `  K )
17 cdleme21.a . . . . 5  |-  A  =  ( Atoms `  K )
1815, 16, 17cdleme21a 30807 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  =/=  z )
198, 9, 10, 11, 12, 13, 14, 18syl322anc 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  S  =/=  z )
207, 19jca 519 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  =/=  Q  /\  S  =/=  z
) )
2115, 16, 17cdleme21b 30808 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )
228, 9, 10, 11, 7, 12, 13, 14, 21syl332anc 1215 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )
23 simp32r 1083 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
2412, 22, 233jca 1134 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( -.  S  .<_  ( P  .\/  Q )  /\  -.  z  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )
25 cdleme21.m . . . 4  |-  ./\  =  ( meet `  K )
26 cdleme21.h . . . 4  |-  H  =  ( LHyp `  K
)
27 cdleme21.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2815, 16, 25, 17, 26, 27cdleme21c 30809 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )
291, 2, 10, 11, 7, 12, 13, 14, 28syl332anc 1215 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  U  .<_  ( S 
.\/  z ) )
30 cdleme21.f . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
31 cdleme21.b . . 3  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
32 cdleme21.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
33 cdleme21.e . . 3  |-  E  =  ( ( R  .\/  z )  ./\  W
)
34 eqid 2404 . . 3  |-  ( ( S  .\/  z ) 
./\  W )  =  ( ( S  .\/  z )  ./\  W
)
35 cdleme21d.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
36 cdleme21d.z . . 3  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
3715, 16, 25, 17, 26, 27, 30, 31, 32, 33, 34, 35, 36cdleme20 30806 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  z )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  z ) ) )  ->  N  =  Z )
381, 2, 3, 4, 5, 6, 20, 24, 29, 37syl333anc 1216 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme21f  30814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator