Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21i Unicode version

Theorem cdleme21i 29774
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21g.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme21g.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21g.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme21g.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21g.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme21i  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  N  =  O ) )
Distinct variable groups:    A, r    F, r    G, r    H, r    .\/ , r    K, r    .<_ , r    ./\ , r    P, r    Q, r    R, r    S, r    T, r    W, r
Allowed substitution hints:    D( r)    U( r)    N( r)    O( r)    Y( r)

Proof of Theorem cdleme21i
StepHypRef Expression
1 simpl11 1035 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 992 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp21l 1077 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  S  e.  A )
52, 3, 43jca 1137 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )
65adantr 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )
7 simp231 1104 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  P  =/=  Q )
87adantr 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  P  =/=  Q
)
9 simp232 1105 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
109adantr 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
11 simpr 449 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
12 cdleme21.l . . . . 5  |-  .<_  =  ( le `  K )
13 cdleme21.j . . . . 5  |-  .\/  =  ( join `  K )
14 cdleme21.a . . . . 5  |-  A  =  ( Atoms `  K )
15 cdleme21.h . . . . 5  |-  H  =  ( LHyp `  K
)
1612, 13, 14, 154atexlem7 29514 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
171, 6, 8, 10, 11, 16syl113anc 1199 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
1817ex 425 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) )
19 cdleme21.m . . 3  |-  ./\  =  ( meet `  K )
20 cdleme21.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
21 cdleme21.f . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
22 cdleme21g.g . . 3  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
23 cdleme21g.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
24 cdleme21g.y . . 3  |-  Y  =  ( ( R  .\/  T )  ./\  W )
25 cdleme21g.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
26 cdleme21g.o . . 3  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
2712, 13, 19, 14, 15, 20, 21, 22, 23, 24, 25, 26cdleme21h 29773 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( S  .\/  z
) )  ->  N  =  O ) )
2818, 27syld 42 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  N  =  O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   E.wrex 2519   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdleme21j  29775
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427
  Copyright terms: Public domain W3C validator