Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22eALTN Unicode version

Theorem cdleme22eALTN 29685
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115.  F,  N,  O represent f(z), fz(s), fz(t) respectively. When t  \/ v = p  \/ q, fz(s)  <_ fz(t)  \/ v. (Contributed by NM, 6-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22eALT.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22eALT.f  |-  F  =  ( ( y  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  y )  ./\  W
) ) )
cdleme22eALT.g  |-  G  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme22eALT.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  y )  ./\  W
) ) )
cdleme22eALT.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  z )  ./\  W
) ) )
Assertion
Ref Expression
cdleme22eALTN  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  N  .<_  ( O  .\/  V ) )

Proof of Theorem cdleme22eALTN
StepHypRef Expression
1 cdleme22eALT.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  y )  ./\  W
) ) )
2 simp11 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  K  e.  HL )
3 hllat 28704 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  K  e.  Lat )
5 simp21l 1077 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  P  e.  A )
6 simp22l 1079 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  Q  e.  A )
7 eqid 2256 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 28707 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
12 simp12 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  W  e.  H )
13 simp3ll 1031 . . . . . . 7  |-  ( ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q ) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  y  e.  A
)
14133ad2ant3 983 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  y  e.  A )
15 cdleme22.l . . . . . . 7  |-  .<_  =  ( le `  K )
16 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
17 cdleme22.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
18 cdleme22eALT.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
19 cdleme22eALT.f . . . . . . 7  |-  F  =  ( ( y  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  y )  ./\  W
) ) )
2015, 8, 16, 9, 17, 18, 19, 7cdleme1b 29566 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  y  e.  A ) )  ->  F  e.  ( Base `  K ) )
212, 12, 5, 6, 14, 20syl23anc 1194 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  F  e.  ( Base `  K )
)
22 simp31 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  S  e.  A )
237, 8, 9hlatjcl 28707 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  y  e.  A )  ->  ( S  .\/  y
)  e.  ( Base `  K ) )
242, 22, 14, 23syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( S  .\/  y )  e.  (
Base `  K )
)
257, 17lhpbase 29338 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2612, 25syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  W  e.  ( Base `  K )
)
277, 16latmcl 14105 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  .\/  y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( S  .\/  y )  ./\  W )  e.  ( Base `  K ) )
284, 24, 26, 27syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( S  .\/  y )  ./\  W )  e.  ( Base `  K ) )
297, 8latjcl 14104 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( S  .\/  y
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( S 
.\/  y )  ./\  W ) )  e.  (
Base `  K )
)
304, 21, 28, 29syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( F  .\/  ( ( S  .\/  y )  ./\  W
) )  e.  (
Base `  K )
)
317, 15, 16latmle1 14130 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( S  .\/  y )  ./\  W
) )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  y ) 
./\  W ) ) )  .<_  ( P  .\/  Q ) )
324, 11, 30, 31syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  y ) 
./\  W ) ) )  .<_  ( P  .\/  Q ) )
331, 32syl5eqbr 4016 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  N  .<_  ( P  .\/  Q ) )
34 simp21 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
35 simp13 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  T  e.  A )
36 simp321 1110 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  V  e.  A )
37 simp322 1111 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  V  .<_  W )
3836, 37jca 520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
39 simp23 995 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  P  =/=  Q )
40 simp323 1112 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  V )  =  ( P  .\/  Q ) )
4115, 8, 16, 9, 17, 18cdleme22a 29680 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  =  U )
422, 12, 34, 6, 35, 38, 39, 40, 41syl233anc 1216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  V  =  U )
4342oveq2d 5794 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( O  .\/  V )  =  ( O  .\/  U ) )
44 cdleme22eALT.o . . . . . 6  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  z )  ./\  W
) ) )
4544oveq1i 5788 . . . . 5  |-  ( O 
.\/  U )  =  ( ( ( P 
.\/  Q )  ./\  ( G  .\/  ( ( T  .\/  z ) 
./\  W ) ) )  .\/  U )
46 simp21r 1078 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  -.  P  .<_  W )
4715, 8, 16, 9, 17, 18cdleme0a 29551 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
482, 12, 5, 46, 6, 39, 47syl222anc 1203 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  U  e.  A )
49 simp3rl 1033 . . . . . . . . 9  |-  ( ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q ) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  z  e.  A
)
50493ad2ant3 983 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  z  e.  A )
51 cdleme22eALT.g . . . . . . . . 9  |-  G  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
5215, 8, 16, 9, 17, 18, 51, 7cdleme1b 29566 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  z  e.  A ) )  ->  G  e.  ( Base `  K ) )
532, 12, 5, 6, 50, 52syl23anc 1194 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  G  e.  ( Base `  K )
)
547, 8, 9hlatjcl 28707 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  T  e.  A  /\  z  e.  A )  ->  ( T  .\/  z
)  e.  ( Base `  K ) )
552, 35, 50, 54syl3anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  z )  e.  (
Base `  K )
)
567, 16latmcl 14105 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( T  .\/  z )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( T  .\/  z )  ./\  W )  e.  ( Base `  K ) )
574, 55, 26, 56syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  z )  ./\  W )  e.  ( Base `  K ) )
587, 8latjcl 14104 . . . . . . 7  |-  ( ( K  e.  Lat  /\  G  e.  ( Base `  K )  /\  (
( T  .\/  z
)  ./\  W )  e.  ( Base `  K
) )  ->  ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  e.  (
Base `  K )
)
594, 53, 57, 58syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  e.  (
Base `  K )
)
6015, 8, 16, 9, 17, 18cdlemeulpq 29560 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
612, 12, 5, 6, 60syl22anc 1188 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  U  .<_  ( P  .\/  Q ) )
627, 15, 8, 16, 9atmod2i1 29201 . . . . . 6  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  e.  (
Base `  K )
)  /\  U  .<_  ( P  .\/  Q ) )  ->  ( (
( P  .\/  Q
)  ./\  ( G  .\/  ( ( T  .\/  z )  ./\  W
) ) )  .\/  U )  =  ( ( P  .\/  Q ) 
./\  ( ( G 
.\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
) ) )
632, 48, 11, 59, 61, 62syl131anc 1200 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( G  .\/  ( ( T  .\/  z )  ./\  W
) ) )  .\/  U )  =  ( ( P  .\/  Q ) 
./\  ( ( G 
.\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
) ) )
6445, 63syl5req 2301 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
) )  =  ( O  .\/  U ) )
6543, 64eqtr4d 2291 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( O  .\/  V )  =  ( ( P  .\/  Q
)  ./\  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
) ) )
6642oveq2d 5794 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  V )  =  ( T  .\/  U ) )
6740, 66eqtr3d 2290 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  Q )  =  ( T  .\/  U ) )
687, 8, 9hlatjcl 28707 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
692, 35, 48, 68syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  U )  e.  (
Base `  K )
)
707, 9atbase 28630 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
7150, 70syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  z  e.  ( Base `  K )
)
727, 15, 8latlej1 14114 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( T  .\/  U )  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  ->  ( T  .\/  U )  .<_  ( ( T  .\/  U ) 
.\/  z ) )
734, 69, 71, 72syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  U )  .<_  ( ( T  .\/  U ) 
.\/  z ) )
748, 9hlatj32 28712 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  U  e.  A  /\  z  e.  A
) )  ->  (
( T  .\/  U
)  .\/  z )  =  ( ( T 
.\/  z )  .\/  U ) )
752, 35, 48, 50, 74syl13anc 1189 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  U )  .\/  z )  =  ( ( T  .\/  z
)  .\/  U )
)
767, 9atbase 28630 . . . . . . . . . 10  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
7748, 76syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  U  e.  ( Base `  K )
)
787, 8latj32 14151 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  ( ( T  .\/  z )  ./\  W
)  e.  ( Base `  K ) ) )  ->  ( ( z 
.\/  U )  .\/  ( ( T  .\/  z )  ./\  W
) )  =  ( ( z  .\/  (
( T  .\/  z
)  ./\  W )
)  .\/  U )
)
794, 71, 77, 57, 78syl13anc 1189 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( (
z  .\/  U )  .\/  ( ( T  .\/  z )  ./\  W
) )  =  ( ( z  .\/  (
( T  .\/  z
)  ./\  W )
)  .\/  U )
)
807, 8latj32 14151 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( G  e.  ( Base `  K )  /\  ( ( T  .\/  z )  ./\  W
)  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) ) )  -> 
( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
)  =  ( ( G  .\/  U ) 
.\/  ( ( T 
.\/  z )  ./\  W ) ) )
814, 53, 57, 77, 80syl13anc 1189 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  =  ( ( G  .\/  U ) 
.\/  ( ( T 
.\/  z )  ./\  W ) ) )
827, 8, 9hlatjcl 28707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  z  e.  A )  ->  ( P  .\/  z
)  e.  ( Base `  K ) )
832, 5, 50, 82syl3anc 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  z )  e.  (
Base `  K )
)
8415, 8, 9hlatlej1 28715 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  z  e.  A )  ->  P  .<_  ( P  .\/  z ) )
852, 5, 50, 84syl3anc 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  P  .<_  ( P  .\/  z ) )
867, 15, 8, 16, 9atmod3i1 29204 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  z
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  z
) )  ->  ( P  .\/  ( ( P 
.\/  z )  ./\  W ) )  =  ( ( P  .\/  z
)  ./\  ( P  .\/  W ) ) )
872, 5, 83, 26, 85, 86syl131anc 1200 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  ( ( P  .\/  z )  ./\  W
) )  =  ( ( P  .\/  z
)  ./\  ( P  .\/  W ) ) )
88 eqid 2256 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1.
`  K )  =  ( 1. `  K
)
8915, 8, 88, 9, 17lhpjat2 29361 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
902, 12, 34, 89syl21anc 1186 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  W )  =  ( 1. `  K ) )
9190oveq2d 5794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  z )  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  z ) 
./\  ( 1. `  K ) ) )
92 hlol 28702 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  HL  ->  K  e.  OL )
932, 92syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  K  e.  OL )
947, 16, 88olm11 28568 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  OL  /\  ( P  .\/  z )  e.  ( Base `  K
) )  ->  (
( P  .\/  z
)  ./\  ( 1. `  K ) )  =  ( P  .\/  z
) )
9593, 83, 94syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  z )  ./\  ( 1. `  K ) )  =  ( P 
.\/  z ) )
9687, 91, 953eqtrd 2292 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  ( ( P  .\/  z )  ./\  W
) )  =  ( P  .\/  z ) )
9796oveq1d 5793 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  Q
)  =  ( ( P  .\/  z ) 
.\/  Q ) )
9818oveq2i 5789 . . . . . . . . . . . . . . . . . . 19  |-  ( Q 
.\/  U )  =  ( Q  .\/  (
( P  .\/  Q
)  ./\  W )
)
9915, 8, 9hlatlej2 28716 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
1002, 5, 6, 99syl3anc 1187 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  Q  .<_  ( P  .\/  Q ) )
1017, 15, 8, 16, 9atmod3i1 29204 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  Q  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( Q  .\/  W ) ) )
1022, 6, 11, 26, 100, 101syl131anc 1200 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  ( Q  .\/  W ) ) )
10398, 102syl5eq 2300 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  .\/  U )  =  ( ( P  .\/  Q
)  ./\  ( Q  .\/  W ) ) )
104 simp22 994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
10515, 8, 88, 9, 17lhpjat2 29361 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  .\/  W
)  =  ( 1.
`  K ) )
1062, 12, 104, 105syl21anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  .\/  W )  =  ( 1. `  K ) )
107106oveq2d 5794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  ./\  ( Q  .\/  W ) )  =  ( ( P  .\/  Q ) 
./\  ( 1. `  K ) ) )
1087, 16, 88olm11 28568 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
10993, 11, 108syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  ./\  ( 1. `  K ) )  =  ( P 
.\/  Q ) )
110103, 107, 1093eqtrd 2292 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
111110oveq1d 5793 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( Q  .\/  U )  .\/  ( ( P  .\/  z )  ./\  W
) )  =  ( ( P  .\/  Q
)  .\/  ( ( P  .\/  z )  ./\  W ) ) )
1127, 9atbase 28630 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1135, 112syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  P  e.  ( Base `  K )
)
1147, 16latmcl 14105 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  ( P  .\/  z )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  z )  ./\  W )  e.  ( Base `  K ) )
1154, 83, 26, 114syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  z )  ./\  W )  e.  ( Base `  K ) )
1167, 9atbase 28630 . . . . . . . . . . . . . . . . . 18  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1176, 116syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  Q  e.  ( Base `  K )
)
1187, 8latj32 14151 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( ( P  .\/  z )  ./\  W
)  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  ( ( P  .\/  z )  ./\  W
) )  .\/  Q
)  =  ( ( P  .\/  Q ) 
.\/  ( ( P 
.\/  z )  ./\  W ) ) )
1194, 113, 115, 117, 118syl13anc 1189 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  Q
)  =  ( ( P  .\/  Q ) 
.\/  ( ( P 
.\/  z )  ./\  W ) ) )
120111, 119eqtr4d 2291 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( Q  .\/  U )  .\/  ( ( P  .\/  z )  ./\  W
) )  =  ( ( P  .\/  (
( P  .\/  z
)  ./\  W )
)  .\/  Q )
)
1218, 9hlatj32 28712 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  z  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  z )  =  ( ( P 
.\/  z )  .\/  Q ) )
1222, 5, 6, 50, 121syl13anc 1189 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  .\/  z )  =  ( ( P  .\/  z
)  .\/  Q )
)
12397, 120, 1223eqtr4rd 2299 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  .\/  z )  =  ( ( Q  .\/  U
)  .\/  ( ( P  .\/  z )  ./\  W ) ) )
1247, 8latj32 14151 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  (
( P  .\/  z
)  ./\  W )  e.  ( Base `  K
) ) )  -> 
( ( Q  .\/  U )  .\/  ( ( P  .\/  z ) 
./\  W ) )  =  ( ( Q 
.\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  U
) )
1254, 117, 77, 115, 124syl13anc 1189 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( Q  .\/  U )  .\/  ( ( P  .\/  z )  ./\  W
) )  =  ( ( Q  .\/  (
( P  .\/  z
)  ./\  W )
)  .\/  U )
)
126123, 125eqtrd 2288 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  .\/  z )  =  ( ( Q  .\/  (
( P  .\/  z
)  ./\  W )
)  .\/  U )
)
127126oveq2d 5794 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( (
z  .\/  U )  ./\  ( ( P  .\/  Q )  .\/  z ) )  =  ( ( z  .\/  U ) 
./\  ( ( Q 
.\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  U
) ) )
1287, 8latjcl 14104 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  z )  e.  (
Base `  K )
)
1294, 11, 71, 128syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  .\/  z )  e.  (
Base `  K )
)
1307, 15, 8latlej2 14115 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  ->  z  .<_  ( ( P  .\/  Q
)  .\/  z )
)
1314, 11, 71, 130syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  z  .<_  ( ( P  .\/  Q
)  .\/  z )
)
1327, 15, 8, 16, 9atmod1i1 29197 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( z  e.  A  /\  U  e.  ( Base `  K )  /\  ( ( P  .\/  Q )  .\/  z )  e.  ( Base `  K
) )  /\  z  .<_  ( ( P  .\/  Q )  .\/  z ) )  ->  ( z  .\/  ( U  ./\  (
( P  .\/  Q
)  .\/  z )
) )  =  ( ( z  .\/  U
)  ./\  ( ( P  .\/  Q )  .\/  z ) ) )
1332, 50, 77, 129, 131, 132syl131anc 1200 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  .\/  ( U  ./\  (
( P  .\/  Q
)  .\/  z )
) )  =  ( ( z  .\/  U
)  ./\  ( ( P  .\/  Q )  .\/  z ) ) )
13451oveq1i 5788 . . . . . . . . . . . . 13  |-  ( G 
.\/  U )  =  ( ( ( z 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z ) 
./\  W ) ) )  .\/  U )
1357, 8, 9hlatjcl 28707 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  z  e.  A  /\  U  e.  A )  ->  ( z  .\/  U
)  e.  ( Base `  K ) )
1362, 50, 48, 135syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  .\/  U )  e.  (
Base `  K )
)
1377, 8latjcl 14104 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  z
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  z )  ./\  W ) )  e.  (
Base `  K )
)
1384, 117, 115, 137syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) )  e.  (
Base `  K )
)
13915, 8, 9hlatlej2 28716 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  z  e.  A  /\  U  e.  A )  ->  U  .<_  ( z  .\/  U ) )
1402, 50, 48, 139syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  U  .<_  ( z  .\/  U ) )
1417, 15, 8, 16, 9atmod2i1 29201 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( z  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  z )  ./\  W ) )  e.  (
Base `  K )
)  /\  U  .<_  ( z  .\/  U ) )  ->  ( (
( z  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )  .\/  U )  =  ( ( z  .\/  U ) 
./\  ( ( Q 
.\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  U
) ) )
1422, 48, 136, 138, 140, 141syl131anc 1200 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( (
( z  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )  .\/  U )  =  ( ( z  .\/  U ) 
./\  ( ( Q 
.\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  U
) ) )
143134, 142syl5eq 2300 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( G  .\/  U )  =  ( ( z  .\/  U
)  ./\  ( ( Q  .\/  ( ( P 
.\/  z )  ./\  W ) )  .\/  U
) ) )
144127, 133, 1433eqtr4rd 2299 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( G  .\/  U )  =  ( z  .\/  ( U 
./\  ( ( P 
.\/  Q )  .\/  z ) ) ) )
1457, 15, 8latlej1 14114 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  z  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  z ) )
1464, 11, 71, 145syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  z ) )
1477, 15, 4, 77, 11, 129, 61, 146lattrd 14112 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  U  .<_  ( ( P  .\/  Q
)  .\/  z )
)
1487, 15, 16latleeqm1 14133 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  z )  e.  ( Base `  K
) )  ->  ( U  .<_  ( ( P 
.\/  Q )  .\/  z )  <->  ( U  ./\  ( ( P  .\/  Q )  .\/  z ) )  =  U ) )
1494, 77, 129, 148syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( U  .<_  ( ( P  .\/  Q )  .\/  z )  <-> 
( U  ./\  (
( P  .\/  Q
)  .\/  z )
)  =  U ) )
150147, 149mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( U  ./\  ( ( P  .\/  Q )  .\/  z ) )  =  U )
151150oveq2d 5794 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  .\/  ( U  ./\  (
( P  .\/  Q
)  .\/  z )
) )  =  ( z  .\/  U ) )
152144, 151eqtrd 2288 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( G  .\/  U )  =  ( z  .\/  U ) )
153152oveq1d 5793 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( G  .\/  U )  .\/  ( ( T  .\/  z )  ./\  W
) )  =  ( ( z  .\/  U
)  .\/  ( ( T  .\/  z )  ./\  W ) ) )
15481, 153eqtrd 2288 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  =  ( ( z  .\/  U ) 
.\/  ( ( T 
.\/  z )  ./\  W ) ) )
15515, 8, 9hlatlej2 28716 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  T  e.  A  /\  z  e.  A )  ->  z  .<_  ( T  .\/  z ) )
1562, 35, 50, 155syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  z  .<_  ( T  .\/  z ) )
1577, 15, 8, 16, 9atmod3i1 29204 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( z  e.  A  /\  ( T  .\/  z
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  z  .<_  ( T  .\/  z
) )  ->  (
z  .\/  ( ( T  .\/  z )  ./\  W ) )  =  ( ( T  .\/  z
)  ./\  ( z  .\/  W ) ) )
1582, 50, 55, 26, 156, 157syl131anc 1200 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  .\/  ( ( T  .\/  z )  ./\  W
) )  =  ( ( T  .\/  z
)  ./\  ( z  .\/  W ) ) )
159 simp33r 1088 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
16015, 8, 88, 9, 17lhpjat2 29361 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( z  e.  A  /\  -.  z  .<_  W ) )  -> 
( z  .\/  W
)  =  ( 1.
`  K ) )
1612, 12, 159, 160syl21anc 1186 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( z  .\/  W )  =  ( 1. `  K ) )
162161oveq2d 5794 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  z )  ./\  ( z  .\/  W
) )  =  ( ( T  .\/  z
)  ./\  ( 1. `  K ) ) )
1637, 16, 88olm11 28568 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  ( T  .\/  z )  e.  ( Base `  K
) )  ->  (
( T  .\/  z
)  ./\  ( 1. `  K ) )  =  ( T  .\/  z
) )
16493, 55, 163syl2anc 645 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  z )  ./\  ( 1. `  K ) )  =  ( T 
.\/  z ) )
165158, 162, 1643eqtrrd 2293 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  z )  =  ( z  .\/  ( ( T  .\/  z ) 
./\  W ) ) )
166165oveq1d 5793 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  z )  .\/  U )  =  ( ( z  .\/  ( ( T  .\/  z ) 
./\  W ) ) 
.\/  U ) )
16779, 154, 1663eqtr4rd 2299 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  z )  .\/  U )  =  ( ( G  .\/  ( ( T  .\/  z ) 
./\  W ) ) 
.\/  U ) )
16875, 167eqtrd 2288 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( T  .\/  U )  .\/  z )  =  ( ( G  .\/  (
( T  .\/  z
)  ./\  W )
)  .\/  U )
)
16973, 168breqtrd 4007 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( T  .\/  U )  .<_  ( ( G  .\/  ( ( T  .\/  z ) 
./\  W ) ) 
.\/  U ) )
17067, 169eqbrtrd 4003 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  Q )  .<_  ( ( G  .\/  ( ( T  .\/  z ) 
./\  W ) ) 
.\/  U ) )
1717, 8latjcl 14104 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( G  .\/  ( ( T  .\/  z ) 
./\  W ) )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  e.  ( Base `  K ) )
1724, 59, 77, 171syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  e.  ( Base `  K ) )
1737, 15, 16latleeqm1 14133 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  .<_  ( ( G  .\/  ( ( T 
.\/  z )  ./\  W ) )  .\/  U
)  <->  ( ( P 
.\/  Q )  ./\  ( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
) )  =  ( P  .\/  Q ) ) )
1744, 11, 172, 173syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  .<_  ( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
)  <->  ( ( P 
.\/  Q )  ./\  ( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
) )  =  ( P  .\/  Q ) ) )
175170, 174mpbid 203 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( G  .\/  ( ( T  .\/  z )  ./\  W
) )  .\/  U
) )  =  ( P  .\/  Q ) )
17665, 175eqtr2d 2289 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  ( P  .\/  Q )  =  ( O  .\/  V ) )
17733, 176breqtrd 4007 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  T  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( S  e.  A  /\  ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
( y  e.  A  /\  -.  y  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) ) )  ->  N  .<_  ( O  .\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   1.cp1 14092   Latclat 14099   OLcol 28515   Atomscatm 28604   HLchlt 28691   LHypclh 29324
This theorem is referenced by:  cdleme26eALTN  29701
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328
  Copyright terms: Public domain W3C validator