Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f2 Unicode version

Theorem cdleme22f2 29804
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme22f 29803 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22f2.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22f2.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme22f2.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme22f2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( N  .\/  V ) )

Proof of Theorem cdleme22f2
StepHypRef Expression
1 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 983 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2r 984 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
41, 2, 33jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
5 simp12 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
6 simp31l 1080 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  e.  A )
7 simp33 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
8 simp32l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  =/=  T )
98necomd 2531 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  =/=  S )
10 simp32r 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  .<_  ( T  .\/  V ) )
11 simp11l 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  HL )
12 hlcvl 28817 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CvLat )
1311, 12syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  CvLat
)
14 simp12l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  e.  A )
15 simp33l 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  e.  A )
16 simp33r 1085 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  .<_  W )
17 simp31r 1081 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  W )
18 nbrne2 4043 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  S  .<_  W )  ->  V  =/=  S
)
1918necomd 2531 . . . . . 6  |-  ( ( V  .<_  W  /\  -.  S  .<_  W )  ->  S  =/=  V
)
2016, 17, 19syl2anc 644 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  =/=  V )
21 cdleme22.l . . . . . 6  |-  .<_  =  ( le `  K )
22 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
23 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
2421, 22, 23cvlatexch2 28795 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  T  e.  A  /\  V  e.  A )  /\  S  =/=  V
)  ->  ( S  .<_  ( T  .\/  V
)  ->  T  .<_  ( S  .\/  V ) ) )
2513, 6, 14, 15, 20, 24syl131anc 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  .<_  ( T  .\/  V
)  ->  T  .<_  ( S  .\/  V ) ) )
2610, 25mpd 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  .<_  ( S  .\/  V ) )
27 cdleme22.m . . . 4  |-  ./\  =  ( meet `  K )
28 cdleme22.h . . . 4  |-  H  =  ( LHyp `  K
)
29 cdleme22f2.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
30 cdleme22f2.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
31 cdleme22f2.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  S )  ./\  W )
) )
3221, 22, 27, 23, 28, 29, 30, 31cdleme22f 29803 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  S  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( T  =/= 
S  /\  T  .<_  ( S  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
334, 5, 6, 7, 9, 26, 32syl132anc 1202 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  .<_  ( F  .\/  V ) )
34 simp31 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
35 simp133 1094 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q )
36 simp132 1093 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  .<_  ( P  .\/  Q ) )
37 simp131 1092 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
3821, 22, 27, 23, 28, 29, 30, 31cdleme7ga 29705 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  N  e.  A )
394, 5, 34, 35, 36, 37, 38syl123anc 1201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  e.  A )
4021, 22, 27, 23, 28, 29, 30cdleme3fa 29693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
411, 2, 3, 34, 35, 37, 40syl132anc 1202 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  e.  A )
4221, 22, 27, 23, 28, 29, 30, 31cdleme7 29706 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  N  .<_  W )
434, 5, 34, 35, 36, 37, 42syl123anc 1201 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  N  .<_  W )
44 nbrne2 4043 . . . . 5  |-  ( ( V  .<_  W  /\  -.  N  .<_  W )  ->  V  =/=  N
)
4544necomd 2531 . . . 4  |-  ( ( V  .<_  W  /\  -.  N  .<_  W )  ->  N  =/=  V
)
4616, 43, 45syl2anc 644 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  =/=  V )
4721, 22, 23cvlatexch2 28795 . . 3  |-  ( ( K  e.  CvLat  /\  ( N  e.  A  /\  F  e.  A  /\  V  e.  A )  /\  N  =/=  V
)  ->  ( N  .<_  ( F  .\/  V
)  ->  F  .<_  ( N  .\/  V ) ) )
4813, 39, 41, 15, 46, 47syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( N  .<_  ( F  .\/  V
)  ->  F  .<_  ( N  .\/  V ) ) )
4933, 48mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( N  .\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   lecple 13210   joincjn 14073   meetcmee 14074   Atomscatm 28721   CvLatclc 28723   HLchlt 28808   LHypclh 29441
This theorem is referenced by:  cdleme26f2ALTN  29821  cdleme26f2  29822
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-lines 28958  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445
  Copyright terms: Public domain W3C validator