Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22gb Unicode version

Theorem cdleme22gb 31105
Description: Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme18d.l  |-  .<_  =  ( le `  K )
cdleme18d.j  |-  .\/  =  ( join `  K )
cdleme18d.m  |-  ./\  =  ( meet `  K )
cdleme18d.a  |-  A  =  ( Atoms `  K )
cdleme18d.h  |-  H  =  ( LHyp `  K
)
cdleme18d.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme18d.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme18d.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme22.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme22gb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  G  e.  B )

Proof of Theorem cdleme22gb
StepHypRef Expression
1 cdleme18d.g . 2  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
2 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  K  e.  HL )
3 hllat 30175 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  K  e.  Lat )
5 simp2l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  P  e.  A )
6 simp2r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  Q  e.  A )
7 cdleme22.b . . . . 5  |-  B  =  ( Base `  K
)
8 cdleme18d.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdleme18d.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 30178 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
112, 5, 6, 10syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( P  .\/  Q )  e.  B
)
12 simp1 955 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp3r 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  S  e.  A )
14 cdleme18d.l . . . . . 6  |-  .<_  =  ( le `  K )
15 cdleme18d.m . . . . . 6  |-  ./\  =  ( meet `  K )
16 cdleme18d.h . . . . . 6  |-  H  =  ( LHyp `  K
)
17 cdleme18d.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme18d.f . . . . . 6  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
1914, 8, 15, 9, 16, 17, 18, 7cdleme1b 31037 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  B )
2012, 5, 6, 13, 19syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  F  e.  B )
21 simp3l 983 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  R  e.  A )
227, 8, 9hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
232, 21, 13, 22syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( R  .\/  S )  e.  B
)
24 simp1r 980 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  W  e.  H )
257, 16lhpbase 30809 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2624, 25syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  W  e.  B )
277, 15latmcl 14173 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( R  .\/  S
)  ./\  W )  e.  B )
284, 23, 26, 27syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  B )
297, 8latjcl 14172 . . . 4  |-  ( ( K  e.  Lat  /\  F  e.  B  /\  ( ( R  .\/  S )  ./\  W )  e.  B )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  B
)
304, 20, 28, 29syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( F  .\/  ( ( R  .\/  S )  ./\  W )
)  e.  B )
317, 15latmcl 14173 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  B
)  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  e.  B )
324, 11, 30, 31syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  e.  B )
331, 32syl5eqel 2380 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  G  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   LHypclh 30795
This theorem is referenced by:  cdleme25a  31164  cdleme25dN  31167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-lat 14168  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799
  Copyright terms: Public domain W3C validator