Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23a Structured version   Unicode version

Theorem cdleme23a 31083
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b  |-  B  =  ( Base `  K
)
cdleme23.l  |-  .<_  =  ( le `  K )
cdleme23.j  |-  .\/  =  ( join `  K )
cdleme23.m  |-  ./\  =  ( meet `  K )
cdleme23.a  |-  A  =  ( Atoms `  K )
cdleme23.h  |-  H  =  ( LHyp `  K
)
cdleme23.v  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
Assertion
Ref Expression
cdleme23a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  V  .<_  W )

Proof of Theorem cdleme23a
StepHypRef Expression
1 cdleme23.v . 2  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
2 cdleme23.b . . 3  |-  B  =  ( Base `  K
)
3 cdleme23.l . . 3  |-  .<_  =  ( le `  K )
4 simp11l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  HL )
5 hllat 30098 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  Lat )
7 simp12l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  e.  A )
8 simp13l 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  e.  A )
9 cdleme23.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdleme23.a . . . . . 6  |-  A  =  ( Atoms `  K )
112, 9, 10hlatjcl 30101 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  B )
124, 7, 8, 11syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  T )  e.  B
)
13 simp2l 983 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  X  e.  B )
14 simp11r 1069 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  H )
15 cdleme23.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
162, 15lhpbase 30732 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1714, 16syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  B )
18 cdleme23.m . . . . . 6  |-  ./\  =  ( meet `  K )
192, 18latmcl 14472 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
206, 13, 17, 19syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
W )  e.  B
)
212, 18latmcl 14472 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  B  /\  ( X  ./\  W )  e.  B )  ->  (
( S  .\/  T
)  ./\  ( X  ./\ 
W ) )  e.  B )
226, 12, 20, 21syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( X  ./\  W ) )  e.  B )
232, 3, 18latmle2 14498 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  B  /\  ( X  ./\  W )  e.  B )  ->  (
( S  .\/  T
)  ./\  ( X  ./\ 
W ) )  .<_  ( X  ./\  W ) )
246, 12, 20, 23syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( X  ./\  W ) )  .<_  ( X  ./\ 
W ) )
252, 3, 18latmle2 14498 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  .<_  W )
266, 13, 17, 25syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
W )  .<_  W )
272, 3, 6, 22, 20, 17, 24, 26lattrd 14479 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( X  ./\  W ) )  .<_  W )
281, 27syl5eqbr 4237 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  V  .<_  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   Latclat 14466   Atomscatm 29998   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  cdleme28a  31104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-glb 14424  df-meet 14426  df-lat 14467  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722
  Copyright terms: Public domain W3C validator