Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23c Unicode version

Theorem cdleme23c 29444
Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b  |-  B  =  ( Base `  K
)
cdleme23.l  |-  .<_  =  ( le `  K )
cdleme23.j  |-  .\/  =  ( join `  K )
cdleme23.m  |-  ./\  =  ( meet `  K )
cdleme23.a  |-  A  =  ( Atoms `  K )
cdleme23.h  |-  H  =  ( LHyp `  K
)
cdleme23.v  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
Assertion
Ref Expression
cdleme23c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( T  .\/  V ) )

Proof of Theorem cdleme23c
StepHypRef Expression
1 simp11l 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  HL )
2 hllat 28457 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  Lat )
4 simp12l 1073 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  e.  A )
5 cdleme23.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme23.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28383 . . . . 5  |-  ( S  e.  A  ->  S  e.  B )
84, 7syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  e.  B )
9 simp13l 1075 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  e.  A )
105, 6atbase 28383 . . . . 5  |-  ( T  e.  A  ->  T  e.  B )
119, 10syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  e.  B )
12 cdleme23.l . . . . 5  |-  .<_  =  ( le `  K )
13 cdleme23.j . . . . 5  |-  .\/  =  ( join `  K )
145, 12, 13latlej1 14010 . . . 4  |-  ( ( K  e.  Lat  /\  S  e.  B  /\  T  e.  B )  ->  S  .<_  ( S  .\/  T ) )
153, 8, 11, 14syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( S  .\/  T ) )
16 simp2l 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  X  e.  B )
17 simp11r 1072 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  H )
18 cdleme23.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
195, 18lhpbase 29091 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  B )
2017, 19syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  B )
21 cdleme23.m . . . . . . 7  |-  ./\  =  ( meet `  K )
225, 21latmcl 14001 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
233, 16, 20, 22syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
W )  e.  B
)
245, 12, 13latlej1 14010 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  B  /\  ( X  ./\  W )  e.  B )  ->  S  .<_  ( S  .\/  ( X  ./\  W ) ) )
253, 8, 23, 24syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( S  .\/  ( X 
./\  W ) ) )
26 simp32 997 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  ( X  ./\  W
) )  =  X )
27 simp33 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( T  .\/  ( X  ./\  W
) )  =  X )
2826, 27eqtr4d 2288 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  ( X  ./\  W
) )  =  ( T  .\/  ( X 
./\  W ) ) )
2925, 28breqtrd 3944 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( T  .\/  ( X 
./\  W ) ) )
305, 13, 6hlatjcl 28460 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  B )
311, 4, 9, 30syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  T )  e.  B
)
325, 13latjcl 14000 . . . . 5  |-  ( ( K  e.  Lat  /\  T  e.  B  /\  ( X  ./\  W )  e.  B )  -> 
( T  .\/  ( X  ./\  W ) )  e.  B )
333, 11, 23, 32syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( T  .\/  ( X  ./\  W
) )  e.  B
)
345, 12, 21latlem12 14028 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  e.  B  /\  ( S  .\/  T
)  e.  B  /\  ( T  .\/  ( X 
./\  W ) )  e.  B ) )  ->  ( ( S 
.<_  ( S  .\/  T
)  /\  S  .<_  ( T  .\/  ( X 
./\  W ) ) )  <->  S  .<_  ( ( S  .\/  T ) 
./\  ( T  .\/  ( X  ./\  W ) ) ) ) )
353, 8, 31, 33, 34syl13anc 1189 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .<_  ( S  .\/  T )  /\  S  .<_  ( T  .\/  ( X 
./\  W ) ) )  <->  S  .<_  ( ( S  .\/  T ) 
./\  ( T  .\/  ( X  ./\  W ) ) ) ) )
3615, 29, 35mpbi2and 892 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( ( S  .\/  T
)  ./\  ( T  .\/  ( X  ./\  W
) ) ) )
37 cdleme23.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
3837oveq2i 5721 . . 3  |-  ( T 
.\/  V )  =  ( T  .\/  (
( S  .\/  T
)  ./\  ( X  ./\ 
W ) ) )
395, 12, 13latlej2 14011 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  B  /\  T  e.  B )  ->  T  .<_  ( S  .\/  T ) )
403, 8, 11, 39syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  .<_  ( S  .\/  T ) )
415, 12, 13, 21, 6atmod3i1 28957 . . . 4  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  ( S  .\/  T
)  e.  B  /\  ( X  ./\  W )  e.  B )  /\  T  .<_  ( S  .\/  T ) )  ->  ( T  .\/  ( ( S 
.\/  T )  ./\  ( X  ./\  W ) ) )  =  ( ( S  .\/  T
)  ./\  ( T  .\/  ( X  ./\  W
) ) ) )
421, 9, 31, 23, 40, 41syl131anc 1200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( T  .\/  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) ) )  =  ( ( S 
.\/  T )  ./\  ( T  .\/  ( X 
./\  W ) ) ) )
4338, 42syl5eq 2297 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( T  .\/  V )  =  ( ( S  .\/  T
)  ./\  ( T  .\/  ( X  ./\  W
) ) ) )
4436, 43breqtrrd 3946 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  .<_  ( T  .\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28357   HLchlt 28444   LHypclh 29077
This theorem is referenced by:  cdleme28a  29463
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081
  Copyright terms: Public domain W3C validator