Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26e Unicode version

Theorem cdleme26e 29815
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115.  F,  N,  O represent f(z), fz(s), fz(t) respectively. When t  \/ v = p  \/ q, fz(s)  <_ fz(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26e.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26e.f  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme26e.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
cdleme26e.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
cdleme26e.i  |-  I  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme26e.e  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
Assertion
Ref Expression
cdleme26e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  .<_  ( E 
.\/  V ) )
Distinct variable groups:    z, u, A    z, B, u    z, H    z,  .\/ , u    z, K   
z,  .<_ , u    z,  ./\ , u    u, N    u, O    z, P, u    z, Q, u   
z, S, u    z, T, u    z, U, u   
z, W, u
Allowed substitution hints:    E( z, u)    F( z, u)    H( u)    I( z, u)    K( u)    N( z)    O( z)    V( z, u)

Proof of Theorem cdleme26e
StepHypRef Expression
1 simp11 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp21l 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  S  e.  A
)
5 simp22l 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  T  e.  A
)
64, 5jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( S  e.  A  /\  T  e.  A ) )
7 simp23 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
8 simp311 1104 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  P  =/=  Q
)
9 simp32l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( T  .\/  V )  =  ( P 
.\/  Q ) )
108, 9jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )
11 simp33 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
12 cdleme26.l . . . 4  |-  .<_  =  ( le `  K )
13 cdleme26.j . . . 4  |-  .\/  =  ( join `  K )
14 cdleme26.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdleme26.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdleme26.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdleme26e.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme26e.f . . . 4  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
19 cdleme26e.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
20 cdleme26e.o . . . 4  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
2112, 13, 14, 15, 16, 17, 18, 19, 20cdleme22e 29800 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  ( P  =/=  Q  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  -.  z  .<_  W ) ) )  ->  N  .<_  ( O  .\/  V
) )
221, 2, 3, 6, 7, 10, 11, 21syl133anc 1207 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  N  .<_  ( O 
.\/  V ) )
23 simp21r 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  S  .<_  W )
24 simp312 1105 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  S  .<_  ( P 
.\/  Q ) )
25 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
26 cdleme26e.i . . . . 5  |-  I  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
2725, 12, 13, 14, 15, 16, 17, 18, 19, 26cdleme25cl 29813 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  S  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
281, 2, 3, 4, 23, 8, 24, 27syl322anc 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  e.  B
)
29 simp33l 1084 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  z  e.  A
)
30 simp33r 1085 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  z  .<_  W )
31 simp32r 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  z  .<_  ( P  .\/  Q ) )
3230, 31jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) ) )
33 fvex 5499 . . . . 5  |-  ( Base `  K )  e.  _V
3425, 33eqeltri 2354 . . . 4  |-  B  e. 
_V
3534, 26riotasv 6347 . . 3  |-  ( ( I  e.  B  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  I  =  N )
3628, 29, 32, 35syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  =  N )
37 simp22r 1077 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  T  .<_  W )
38 simp313 1106 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  T  .<_  ( P 
.\/  Q ) )
39 cdleme26e.e . . . . . 6  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
4025, 12, 13, 14, 15, 16, 17, 18, 20, 39cdleme25cl 29813 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  T  .<_  ( P  .\/  Q ) ) )  ->  E  e.  B )
411, 2, 3, 5, 37, 8, 38, 40syl322anc 1212 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  E  e.  B
)
4234, 39riotasv 6347 . . . 4  |-  ( ( E  e.  B  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  E  =  O )
4341, 29, 32, 42syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  E  =  O )
4443oveq1d 5834 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( E  .\/  V )  =  ( O 
.\/  V ) )
4522, 36, 443brtr4d 4054 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  .<_  ( E 
.\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   _Vcvv 2789   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   iota_crio 6290   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   Atomscatm 28720   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdleme26ee  29816
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444
  Copyright terms: Public domain W3C validator