Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26e Structured version   Unicode version

Theorem cdleme26e 31057
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115.  F,  N,  O represent f(z), fz(s), fz(t) respectively. When t  \/ v = p  \/ q, fz(s)  <_ fz(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26e.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26e.f  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme26e.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
cdleme26e.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
cdleme26e.i  |-  I  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme26e.e  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
Assertion
Ref Expression
cdleme26e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  .<_  ( E 
.\/  V ) )
Distinct variable groups:    z, u, A    z, B, u    z, H    z,  .\/ , u    z, K   
z,  .<_ , u    z,  ./\ , u    u, N    u, O    z, P, u    z, Q, u   
z, S, u    z, T, u    z, U, u   
z, W, u
Allowed substitution hints:    E( z, u)    F( z, u)    H( u)    I( z, u)    K( u)    N( z)    O( z)    V( z, u)

Proof of Theorem cdleme26e
StepHypRef Expression
1 simp11 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp21l 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  S  e.  A
)
5 simp22l 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  T  e.  A
)
64, 5jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( S  e.  A  /\  T  e.  A ) )
7 simp23 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
8 simp311 1104 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  P  =/=  Q
)
9 simp32l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( T  .\/  V )  =  ( P 
.\/  Q ) )
108, 9jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )
11 simp33 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
12 cdleme26.l . . . 4  |-  .<_  =  ( le `  K )
13 cdleme26.j . . . 4  |-  .\/  =  ( join `  K )
14 cdleme26.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdleme26.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdleme26.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdleme26e.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme26e.f . . . 4  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
19 cdleme26e.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
20 cdleme26e.o . . . 4  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
2112, 13, 14, 15, 16, 17, 18, 19, 20cdleme22e 31042 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  ( P  =/=  Q  /\  ( T  .\/  V )  =  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  -.  z  .<_  W ) ) )  ->  N  .<_  ( O  .\/  V
) )
221, 2, 3, 6, 7, 10, 11, 21syl133anc 1207 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  N  .<_  ( O 
.\/  V ) )
23 simp21r 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  S  .<_  W )
24 simp312 1105 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  S  .<_  ( P 
.\/  Q ) )
25 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
26 cdleme26e.i . . . . 5  |-  I  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
2725, 12, 13, 14, 15, 16, 17, 18, 19, 26cdleme25cl 31055 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  S  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
281, 2, 3, 4, 23, 8, 24, 27syl322anc 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  e.  B
)
29 simp33l 1084 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  z  e.  A
)
30 simp33r 1085 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  z  .<_  W )
31 simp32r 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  z  .<_  ( P  .\/  Q ) )
3230, 31jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) ) )
33 fvex 5734 . . . . 5  |-  ( Base `  K )  e.  _V
3425, 33eqeltri 2505 . . . 4  |-  B  e. 
_V
3534, 26riotasv 6589 . . 3  |-  ( ( I  e.  B  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  I  =  N )
3628, 29, 32, 35syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  =  N )
37 simp22r 1077 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  -.  T  .<_  W )
38 simp313 1106 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  T  .<_  ( P 
.\/  Q ) )
39 cdleme26e.e . . . . . 6  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
4025, 12, 13, 14, 15, 16, 17, 18, 20, 39cdleme25cl 31055 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  T  .<_  ( P  .\/  Q ) ) )  ->  E  e.  B )
411, 2, 3, 5, 37, 8, 38, 40syl322anc 1212 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  E  e.  B
)
4234, 39riotasv 6589 . . . 4  |-  ( ( E  e.  B  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  E  =  O )
4341, 29, 32, 42syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  E  =  O )
4443oveq1d 6088 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  ( E  .\/  V )  =  ( O 
.\/  V ) )
4522, 36, 443brtr4d 4234 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  .<_  ( E 
.\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   _Vcvv 2948   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13459   lecple 13526   joincjn 14391   meetcmee 14392   Atomscatm 29962   HLchlt 30049   LHypclh 30682
This theorem is referenced by:  cdleme26ee  31058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-llines 30196  df-lplanes 30197  df-lvols 30198  df-lines 30199  df-psubsp 30201  df-pmap 30202  df-padd 30494  df-lhyp 30686
  Copyright terms: Public domain W3C validator