Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26f2ALTN Unicode version

Theorem cdleme26f2ALTN 30626
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26fALTN 30624 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26f2.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26f2.f  |-  G  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme26f2.n  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  s )  ./\  W
) ) )
cdleme26f2.e  |-  E  =  ( iota_ u  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
Assertion
Ref Expression
cdleme26f2ALTN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( E 
.\/  V ) )
Distinct variable groups:    u, s, A    B, s, u    H, s    .\/ , s, u    K, s   
.<_ , s, u    ./\ , s, u   
u, O    P, s, u    Q, s, u    T, s, u    U, s, u    W, s, u
Allowed substitution hints:    E( u, s)    G( u, s)    H( u)    K( u)    O( s)    V( u, s)

Proof of Theorem cdleme26f2ALTN
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp23 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
3 simp31r 1079 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
4 simp12r 1069 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  .<_  ( P 
.\/  Q ) )
5 simp12l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q
)
63, 4, 53jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( -.  s  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )
7 simp21 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8 simp22 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
9 simp13 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( s  e.  A  /\  -.  s  .<_  W ) )
10 simp32 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) ) )
11 simp33 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
12 cdleme26.l . . . 4  |-  .<_  =  ( le `  K )
13 cdleme26.j . . . 4  |-  .\/  =  ( join `  K )
14 cdleme26.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdleme26.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdleme26.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdleme26f2.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme26f2.f . . . 4  |-  G  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
19 cdleme26f2.n . . . 4  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  s )  ./\  W
) ) )
2012, 13, 14, 15, 16, 17, 18, 19cdleme22f2 30609 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  s  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  =/=  T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( O  .\/  V ) )
211, 2, 6, 7, 8, 9, 10, 11, 20syl323anc 1212 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( O 
.\/  V ) )
22 simp23l 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  e.  A
)
23 simp23r 1077 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  T  .<_  W )
24 cdleme26.b . . . . . 6  |-  B  =  ( Base `  K
)
25 cdleme26f2.e . . . . . 6  |-  E  =  ( iota_ u  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
2624, 12, 13, 14, 15, 16, 17, 18, 19, 25cdleme25cl 30619 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  T  .<_  ( P  .\/  Q ) ) )  ->  E  e.  B )
271, 7, 8, 22, 23, 5, 4, 26syl322anc 1210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  E  e.  B
)
28 simp13l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  s  e.  A
)
29 simp31 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) ) )
30 fvex 5541 . . . . . 6  |-  ( Base `  K )  e.  _V
3124, 30eqeltri 2355 . . . . 5  |-  B  e. 
_V
3231, 25riotasv 6354 . . . 4  |-  ( ( E  e.  B  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )  ->  E  =  O )
3327, 28, 29, 32syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  E  =  O )
3433oveq1d 5875 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( E  .\/  V )  =  ( O 
.\/  V ) )
3521, 34breqtrrd 4051 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
) )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  /\  ( s  =/= 
T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( E 
.\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   _Vcvv 2790   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   HLchlt 29613   LHypclh 30246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250
  Copyright terms: Public domain W3C validator