Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28c Unicode version

Theorem cdleme28c 30486
Description: Part of proof of Lemma E in [Crawley] p. 113. Eliminate the  s  =/=  t antecedent in cdleme28b 30485. TODO: FIX COMMENT (Contributed by NM, 6-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme27.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme27.z  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme27.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
cdleme27.d  |-  D  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme27.c  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
cdleme27.g  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme27.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
cdleme27.e  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
cdleme27.y  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
Assertion
Ref Expression
cdleme28c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
Distinct variable groups:    t, s, u, z, A    B, s,
t, u, z    u, F    u, G    H, s,
t, z    .\/ , s, t, u, z    K, s, t, z    .<_ , s, t, u, z    ./\ , s,
t, u, z    t, N, u    O, s, u    P, s, t, u, z    Q, s, t, u, z    U, s, t, u, z    W, s, t, u, z    X, s, z, t
Allowed substitution hints:    C( z, u, t, s)    D( z, u, t, s)    E( z, u, t, s)    F( z, t, s)    G( z, t, s)    H( u)    K( u)    N( z, s)    O( z, t)    X( u)    Y( z, u, t, s)    Z( z, u, t, s)

Proof of Theorem cdleme28c
StepHypRef Expression
1 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
2 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
3 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
4 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
5 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 cdleme27.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme27.f . . . . 5  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdleme27.z . . . . 5  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
10 cdleme27.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
11 cdleme27.d . . . . 5  |-  D  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
12 cdleme27.c . . . . 5  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
13 cdleme27.g . . . . 5  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
14 cdleme27.o . . . . 5  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
15 cdleme27.e . . . . 5  |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
16 cdleme27.y . . . . 5  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme27b 30482 . . . 4  |-  ( s  =  t  ->  C  =  Y )
1817oveq1d 6035 . . 3  |-  ( s  =  t  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
1918adantl 453 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =  t )  -> 
( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X  ./\  W ) ) )
20 simpl11 1032 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( K  e.  HL  /\  W  e.  H ) )
21 simpl12 1033 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
22 simpl13 1034 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
23 simpl21 1035 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  P  =/=  Q )
24 simpl22 1036 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
25 simpl23 1037 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
26 simpr 448 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  s  =/=  t )
27 simpl31 1038 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  .\/  ( X  ./\ 
W ) )  =  X )
28 simpl32 1039 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
t  .\/  ( X  ./\ 
W ) )  =  X )
2927, 28jca 519 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
( s  .\/  ( X  ./\  W ) )  =  X  /\  (
t  .\/  ( X  ./\ 
W ) )  =  X ) )
30 simpl33 1040 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme28b 30485 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  =/=  t  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
3220, 21, 22, 23, 24, 25, 26, 29, 30, 31syl333anc 1216 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
3319, 32pm2.61dane 2628 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   ifcif 3682   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   iota_crio 6478   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Atomscatm 29378   HLchlt 29465   LHypclh 30098
This theorem is referenced by:  cdleme28  30487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102
  Copyright terms: Public domain W3C validator