Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Unicode version

Theorem cdleme31fv 31026
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme31.c  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
Assertion
Ref Expression
cdleme31fv  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
Distinct variable groups:    x, B    x, C    x,  .<_    x, P    x, Q    x, W    x, s, z, X
Allowed substitution hints:    A( x, z, s)    B( z, s)    C( z, s)    P( z, s)    Q( z, s)    F( x, z, s)    .\/ ( x, z, s)    .<_ ( z, s)    ./\ ( x, z, s)    N( x, z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
2 riotaex 6544 . . . 4  |-  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) )  e.  _V
31, 2eqeltri 2505 . . 3  |-  C  e. 
_V
4 ifexg 3790 . . 3  |-  ( ( C  e.  _V  /\  X  e.  B )  ->  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )
53, 4mpan 652 . 2  |-  ( X  e.  B  ->  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )
6 breq1 4207 . . . . . 6  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
76notbid 286 . . . . 5  |-  ( x  =  X  ->  ( -.  x  .<_  W  <->  -.  X  .<_  W ) )
87anbi2d 685 . . . 4  |-  ( x  =  X  ->  (
( P  =/=  Q  /\  -.  x  .<_  W )  <-> 
( P  =/=  Q  /\  -.  X  .<_  W ) ) )
9 oveq1 6079 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
109oveq2d 6088 . . . . . . . . . 10  |-  ( x  =  X  ->  (
s  .\/  ( x  ./\ 
W ) )  =  ( s  .\/  ( X  ./\  W ) ) )
11 id 20 . . . . . . . . . 10  |-  ( x  =  X  ->  x  =  X )
1210, 11eqeq12d 2449 . . . . . . . . 9  |-  ( x  =  X  ->  (
( s  .\/  (
x  ./\  W )
)  =  x  <->  ( s  .\/  ( X  ./\  W
) )  =  X ) )
1312anbi2d 685 . . . . . . . 8  |-  ( x  =  X  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) ) )
149oveq2d 6088 . . . . . . . . 9  |-  ( x  =  X  ->  ( N  .\/  ( x  ./\  W ) )  =  ( N  .\/  ( X 
./\  W ) ) )
1514eqeq2d 2446 . . . . . . . 8  |-  ( x  =  X  ->  (
z  =  ( N 
.\/  ( x  ./\  W ) )  <->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
1613, 15imbi12d 312 . . . . . . 7  |-  ( x  =  X  ->  (
( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) ) )
1716ralbidv 2717 . . . . . 6  |-  ( x  =  X  ->  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
1817riotabidv 6542 . . . . 5  |-  ( x  =  X  ->  ( iota_ z  e.  B A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
19 cdleme31.o . . . . 5  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
2018, 19, 13eqtr4g 2492 . . . 4  |-  ( x  =  X  ->  O  =  C )
218, 20, 11ifbieq12d 3753 . . 3  |-  ( x  =  X  ->  if ( ( P  =/= 
Q  /\  -.  x  .<_  W ) ,  O ,  x )  =  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
22 cdleme31.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
2321, 22fvmptg 5795 . 2  |-  ( ( X  e.  B  /\  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )  ->  ( F `  X )  =  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
245, 23mpdan 650 1  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   _Vcvv 2948   ifcif 3731   class class class wbr 4204    e. cmpt 4258   ` cfv 5445  (class class class)co 6072   iota_crio 6533
This theorem is referenced by:  cdleme31fv1  31027
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-iota 5409  df-fun 5447  df-fv 5453  df-ov 6075  df-riota 6540
  Copyright terms: Public domain W3C validator