Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv1 Unicode version

Theorem cdleme31fv1 29848
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme31.c  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
Assertion
Ref Expression
cdleme31fv1  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
Distinct variable groups:    x, B    x, C    x,  .<_    x, P    x, Q    x, W    x, s, z, X
Allowed substitution hints:    A( x, z, s)    B( z, s)    C( z, s)    P( z, s)    Q( z, s)    F( x, z, s)    .\/ ( x, z, s)    .<_ ( z, s)    ./\ ( x, z, s)    N( x, z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31fv1
StepHypRef Expression
1 cdleme31.o . . 3  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
2 cdleme31.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
3 cdleme31.c . . 3  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
41, 2, 3cdleme31fv 29847 . 2  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
5 iftrue 3573 . 2  |-  ( ( P  =/=  Q  /\  -.  X  .<_  W )  ->  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X
)  =  C )
64, 5sylan9eq 2337 1  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5222  (class class class)co 5820   iota_crio 6291
This theorem is referenced by:  cdleme31fv1s  29849  cdleme32fvcl  29897  cdleme32a  29898  cdleme42b  29935
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fv 5230  df-ov 5823  df-iota 6253  df-riota 6300
  Copyright terms: Public domain W3C validator