Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv1s Unicode version

Theorem cdleme31fv1s 29711
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme31fv1s  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  [_ X  /  x ]_ O
)
Distinct variable groups:    x, B    x, 
.<_    x, P    x, Q    x, W    x, s, z, X    x, A    B, s, z    x,  .\/    x,  ./\    x, N
Allowed substitution hints:    A( z, s)    P( z, s)    Q( z, s)    F( x, z, s)    .\/ ( z, s)    .<_ ( z, s)    ./\ ( z, s)    N( z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31fv1s
StepHypRef Expression
1 cdleme31.o . . 3  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
2 cdleme31.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
3 eqid 2256 . . 3  |-  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) )  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) )
41, 2, 3cdleme31fv1 29710 . 2  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
51, 3cdleme31so 29698 . . 3  |-  ( X  e.  B  ->  [_ X  /  x ]_ O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
65adantr 453 . 2  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  [_ X  /  x ]_ O  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
74, 6eqtr4d 2291 1  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  [_ X  /  x ]_ O
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   [_csb 3023   ifcif 3506   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   iota_crio 6228
This theorem is referenced by:  cdlemefrs32fva1  29720  cdleme32fva1  29757
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-ov 5760  df-iota 6190  df-riota 6237
  Copyright terms: Public domain W3C validator