Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv2 Structured version   Unicode version

Theorem cdleme31fv2 31288
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme31fv2  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  X )
Distinct variable groups:    x, B    x, 
.<_    x, P    x, Q    x, W    x, X
Allowed substitution hints:    F( x)    O( x)

Proof of Theorem cdleme31fv2
StepHypRef Expression
1 cdleme31fv2.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
21a1i 11 . 2  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) ) )
3 breq1 4240 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
43notbid 287 . . . . . . . 8  |-  ( x  =  X  ->  ( -.  x  .<_  W  <->  -.  X  .<_  W ) )
54anbi2d 686 . . . . . . 7  |-  ( x  =  X  ->  (
( P  =/=  Q  /\  -.  x  .<_  W )  <-> 
( P  =/=  Q  /\  -.  X  .<_  W ) ) )
65notbid 287 . . . . . 6  |-  ( x  =  X  ->  ( -.  ( P  =/=  Q  /\  -.  x  .<_  W )  <->  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) ) )
76biimparc 475 . . . . 5  |-  ( ( -.  ( P  =/= 
Q  /\  -.  X  .<_  W )  /\  x  =  X )  ->  -.  ( P  =/=  Q  /\  -.  x  .<_  W ) )
87adantll 696 . . . 4  |-  ( ( ( X  e.  B  /\  -.  ( P  =/= 
Q  /\  -.  X  .<_  W ) )  /\  x  =  X )  ->  -.  ( P  =/= 
Q  /\  -.  x  .<_  W ) )
9 iffalse 3770 . . . 4  |-  ( -.  ( P  =/=  Q  /\  -.  x  .<_  W )  ->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x
)  =  x )
108, 9syl 16 . . 3  |-  ( ( ( X  e.  B  /\  -.  ( P  =/= 
Q  /\  -.  X  .<_  W ) )  /\  x  =  X )  ->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x )  =  x )
11 simpr 449 . . 3  |-  ( ( ( X  e.  B  /\  -.  ( P  =/= 
Q  /\  -.  X  .<_  W ) )  /\  x  =  X )  ->  x  =  X )
1210, 11eqtrd 2474 . 2  |-  ( ( ( X  e.  B  /\  -.  ( P  =/= 
Q  /\  -.  X  .<_  W ) )  /\  x  =  X )  ->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x )  =  X )
13 simpl 445 . 2  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  X  e.  B )
142, 12, 13, 13fvmptd 5839 1  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727    =/= wne 2605   ifcif 3763   class class class wbr 4237    e. cmpt 4291   ` cfv 5483
This theorem is referenced by:  cdleme31id  31289  cdleme32fvcl  31335  cdleme32e  31340  cdleme32le  31342  cdleme48gfv  31432  cdleme50ldil  31443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-iota 5447  df-fun 5485  df-fv 5491
  Copyright terms: Public domain W3C validator