Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Unicode version

Theorem cdleme31sc 29703
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sc.x  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme31sc  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Distinct variable groups:    A, s    .\/ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2393 . . 3  |-  ( R  e.  A  ->  F/_ s
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
2 oveq1 5764 . . . 4  |-  ( s  =  R  ->  (
s  .\/  U )  =  ( R  .\/  U ) )
3 oveq2 5765 . . . . . 6  |-  ( s  =  R  ->  ( P  .\/  s )  =  ( P  .\/  R
) )
43oveq1d 5772 . . . . 5  |-  ( s  =  R  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
54oveq2d 5773 . . . 4  |-  ( s  =  R  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
62, 5oveq12d 5775 . . 3  |-  ( s  =  R  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
71, 6csbiegf 3063 . 2  |-  ( R  e.  A  ->  [_ R  /  s ]_ (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
8 cdleme31sc.c . . 3  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
98csbeq2i 3049 . 2  |-  [_ R  /  s ]_ C  =  [_ R  /  s ]_ ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
10 cdleme31sc.x . 2  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
117, 9, 103eqtr4g 2313 1  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   [_csb 3023  (class class class)co 5757
This theorem is referenced by:  cdleme31snd  29705  cdleme31sdnN  29706  cdlemefr44  29744  cdlemefr45e  29747  cdleme48fv  29818  cdleme46fvaw  29820  cdleme48bw  29821  cdleme46fsvlpq  29824  cdlemeg46fvcl  29825  cdlemeg49le  29830  cdlemeg46fjgN  29840  cdlemeg46rjgN  29841  cdlemeg46fjv  29842  cdleme48d  29854  cdlemeg49lebilem  29858  cdleme50eq  29860  cdleme50f  29861  cdlemg2jlemOLDN  29912  cdlemg2klem  29914
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fv 4654  df-ov 5760
  Copyright terms: Public domain W3C validator