Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Unicode version

Theorem cdleme31sc 29740
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sc.x  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme31sc  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Distinct variable groups:    A, s    .\/ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2395 . . 3  |-  ( R  e.  A  ->  F/_ s
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
2 oveq1 5799 . . . 4  |-  ( s  =  R  ->  (
s  .\/  U )  =  ( R  .\/  U ) )
3 oveq2 5800 . . . . . 6  |-  ( s  =  R  ->  ( P  .\/  s )  =  ( P  .\/  R
) )
43oveq1d 5807 . . . . 5  |-  ( s  =  R  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
54oveq2d 5808 . . . 4  |-  ( s  =  R  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
62, 5oveq12d 5810 . . 3  |-  ( s  =  R  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
71, 6csbiegf 3096 . 2  |-  ( R  e.  A  ->  [_ R  /  s ]_ (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
8 cdleme31sc.c . . 3  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
98csbeq2i 3082 . 2  |-  [_ R  /  s ]_ C  =  [_ R  /  s ]_ ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
10 cdleme31sc.x . 2  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
117, 9, 103eqtr4g 2315 1  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   [_csb 3056  (class class class)co 5792
This theorem is referenced by:  cdleme31snd  29742  cdleme31sdnN  29743  cdlemefr44  29781  cdlemefr45e  29784  cdleme48fv  29855  cdleme46fvaw  29857  cdleme48bw  29858  cdleme46fsvlpq  29861  cdlemeg46fvcl  29862  cdlemeg49le  29867  cdlemeg46fjgN  29877  cdlemeg46rjgN  29878  cdlemeg46fjv  29879  cdleme48d  29891  cdlemeg49lebilem  29895  cdleme50eq  29897  cdleme50f  29898  cdlemg2jlemOLDN  29949  cdlemg2klem  29951
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fv 4689  df-ov 5795
  Copyright terms: Public domain W3C validator