Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Unicode version

Theorem cdleme31sc 31195
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sc.x  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme31sc  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Distinct variable groups:    A, s    .\/ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2433 . . 3  |-  ( R  e.  A  ->  F/_ s
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
2 oveq1 5881 . . . 4  |-  ( s  =  R  ->  (
s  .\/  U )  =  ( R  .\/  U ) )
3 oveq2 5882 . . . . . 6  |-  ( s  =  R  ->  ( P  .\/  s )  =  ( P  .\/  R
) )
43oveq1d 5889 . . . . 5  |-  ( s  =  R  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
54oveq2d 5890 . . . 4  |-  ( s  =  R  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
62, 5oveq12d 5892 . . 3  |-  ( s  =  R  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
71, 6csbiegf 3134 . 2  |-  ( R  e.  A  ->  [_ R  /  s ]_ (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
8 cdleme31sc.c . . 3  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
98csbeq2i 3120 . 2  |-  [_ R  /  s ]_ C  =  [_ R  /  s ]_ ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
10 cdleme31sc.x . 2  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
117, 9, 103eqtr4g 2353 1  |-  ( R  e.  A  ->  [_ R  /  s ]_ C  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   [_csb 3094  (class class class)co 5874
This theorem is referenced by:  cdleme31snd  31197  cdleme31sdnN  31198  cdlemefr44  31236  cdlemefr45e  31239  cdleme48fv  31310  cdleme46fvaw  31312  cdleme48bw  31313  cdleme46fsvlpq  31316  cdlemeg46fvcl  31317  cdlemeg49le  31322  cdlemeg46fjgN  31332  cdlemeg46rjgN  31333  cdlemeg46fjv  31334  cdleme48d  31346  cdlemeg49lebilem  31350  cdleme50eq  31352  cdleme50f  31353  cdlemg2jlemOLDN  31404  cdlemg2klem  31406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator