Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sdnN Unicode version

Theorem cdleme31sdnN 30576
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme31sdn.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sdn.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme31sdn.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdleme31sdnN  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D
)
Distinct variable groups:    t,  .\/    t, 
./\    t, P    t, Q    t, U    t, W    t,
s
Allowed substitution hints:    C( t, s)    D( t, s)    P( s)    Q( s)    U( s)    I(
t, s)    .\/ ( s)    .<_ ( t, s)    ./\ ( s)    N( t,
s)    W( s)

Proof of Theorem cdleme31sdnN
StepHypRef Expression
1 cdleme31sdn.n . 2  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
2 biid 227 . . 3  |-  ( s 
.<_  ( P  .\/  Q
)  <->  s  .<_  ( P 
.\/  Q ) )
3 vex 2791 . . . 4  |-  s  e. 
_V
4 cdleme31sdn.d . . . . 5  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
5 cdleme31sdn.c . . . . 5  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
64, 5cdleme31sc 30573 . . . 4  |-  ( s  e.  _V  ->  [_ s  /  t ]_ D  =  C )
73, 6ax-mp 8 . . 3  |-  [_ s  /  t ]_ D  =  C
82, 7ifbieq2i 3584 . 2  |-  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D )  =  if ( s  .<_  ( P 
.\/  Q ) ,  I ,  C )
91, 8eqtr4i 2306 1  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   [_csb 3081   ifcif 3565   class class class wbr 4023  (class class class)co 5858
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator