Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31se2 Unicode version

Theorem cdleme31se2 30499
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
cdleme31se2.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme31se2.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme31se2  |-  ( S  e.  A  ->  [_ S  /  t ]_ E  =  Y )
Distinct variable groups:    t, A    t, 
.\/    t,  ./\    t, P    t, Q    t, R    t, S    t, W
Allowed substitution hints:    D( t)    E( t)    Y( t)

Proof of Theorem cdleme31se2
StepHypRef Expression
1 nfcv 2525 . . . . 5  |-  F/_ t
( P  .\/  Q
)
2 nfcv 2525 . . . . 5  |-  F/_ t  ./\
3 nfcsb1v 3228 . . . . . 6  |-  F/_ t [_ S  /  t ]_ D
4 nfcv 2525 . . . . . 6  |-  F/_ t  .\/
5 nfcv 2525 . . . . . 6  |-  F/_ t
( ( R  .\/  S )  ./\  W )
63, 4, 5nfov 6045 . . . . 5  |-  F/_ t
( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S ) 
./\  W ) )
71, 2, 6nfov 6045 . . . 4  |-  F/_ t
( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) )
87a1i 11 . . 3  |-  ( S  e.  A  ->  F/_ t
( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
9 csbeq1a 3204 . . . . 5  |-  ( t  =  S  ->  D  =  [_ S  /  t ]_ D )
10 oveq2 6030 . . . . . 6  |-  ( t  =  S  ->  ( R  .\/  t )  =  ( R  .\/  S
) )
1110oveq1d 6037 . . . . 5  |-  ( t  =  S  ->  (
( R  .\/  t
)  ./\  W )  =  ( ( R 
.\/  S )  ./\  W ) )
129, 11oveq12d 6040 . . . 4  |-  ( t  =  S  ->  ( D  .\/  ( ( R 
.\/  t )  ./\  W ) )  =  (
[_ S  /  t ]_ D  .\/  ( ( R  .\/  S ) 
./\  W ) ) )
1312oveq2d 6038 . . 3  |-  ( t  =  S  ->  (
( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
148, 13csbiegf 3236 . 2  |-  ( S  e.  A  ->  [_ S  /  t ]_ (
( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
15 cdleme31se2.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
1615csbeq2i 3222 . 2  |-  [_ S  /  t ]_ E  =  [_ S  /  t ]_ ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
17 cdleme31se2.y . 2  |-  Y  =  ( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
) )
1814, 16, 173eqtr4g 2446 1  |-  ( S  e.  A  ->  [_ S  /  t ]_ E  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   F/_wnfc 2512   [_csb 3196  (class class class)co 6022
This theorem is referenced by:  cdlemeg47rv2  30626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-iota 5360  df-fv 5404  df-ov 6025
  Copyright terms: Public domain W3C validator