Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1 Unicode version

Theorem cdleme31sn1 31192
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn1.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme31sn1.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn1.c  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
Assertion
Ref Expression
cdleme31sn1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Distinct variable groups:    t, s,
y, A    B, s    .\/ , s    .<_ , s    P, s    Q, s    R, s, t, y    W, s
Allowed substitution hints:    B( y, t)    C( y, t, s)    D( y, t, s)    P( y, t)    Q( y, t)    G( y, t, s)    I( y, t, s)    .\/ ( y, t)    .<_ ( y, t)    N( y, t, s)    W( y, t)

Proof of Theorem cdleme31sn1
StepHypRef Expression
1 cdleme31sn1.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
2 eqid 2296 . . . 4  |-  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)
31, 2cdleme31sn 31191 . . 3  |-  ( R  e.  A  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  / 
s ]_ I ,  [_ R  /  s ]_ D
) )
43adantr 451 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  / 
s ]_ I ,  [_ R  /  s ]_ D
) )
5 iftrue 3584 . . . . 5  |-  ( R 
.<_  ( P  .\/  Q
)  ->  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  [_ R  /  s ]_ I
)
6 cdleme31sn1.i . . . . . 6  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
76csbeq2i 3120 . . . . 5  |-  [_ R  /  s ]_ I  =  [_ R  /  s ]_ ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
85, 7syl6eq 2344 . . . 4  |-  ( R 
.<_  ( P  .\/  Q
)  ->  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  [_ R  /  s ]_ ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) ) )
9 nfcv 2432 . . . . . . . 8  |-  F/_ s A
10 nfv 1609 . . . . . . . . 9  |-  F/ s ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )
11 nfcsb1v 3126 . . . . . . . . . 10  |-  F/_ s [_ R  /  s ]_ G
1211nfeq2 2443 . . . . . . . . 9  |-  F/ s  y  =  [_ R  /  s ]_ G
1310, 12nfim 1781 . . . . . . . 8  |-  F/ s ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )
149, 13nfral 2609 . . . . . . 7  |-  F/ s A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )
15 nfcv 2432 . . . . . . 7  |-  F/_ s B
1614, 15nfriota 6330 . . . . . 6  |-  F/_ s
( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
1716a1i 10 . . . . 5  |-  ( R  e.  A  ->  F/_ s
( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
18 csbeq1a 3102 . . . . . . . . 9  |-  ( s  =  R  ->  G  =  [_ R  /  s ]_ G )
1918eqeq2d 2307 . . . . . . . 8  |-  ( s  =  R  ->  (
y  =  G  <->  y  =  [_ R  /  s ]_ G ) )
2019imbi2d 307 . . . . . . 7  |-  ( s  =  R  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
2120ralbidv 2576 . . . . . 6  |-  ( s  =  R  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
2221riotabidv 6322 . . . . 5  |-  ( s  =  R  ->  ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
2317, 22csbiegf 3134 . . . 4  |-  ( R  e.  A  ->  [_ R  /  s ]_ ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
248, 23sylan9eqr 2350 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
25 cdleme31sn1.c . . 3  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
2624, 25syl6eqr 2346 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  C )
274, 26eqtrd 2328 1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   F/_wnfc 2419   A.wral 2556   [_csb 3094   ifcif 3578   class class class wbr 4039  (class class class)co 5874   iota_crio 6313
This theorem is referenced by:  cdleme31sn1c  31199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-riota 6320
  Copyright terms: Public domain W3C validator