Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1c Unicode version

Theorem cdleme31sn1c 30874
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sn1c.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme31sn1c.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme31sn1c.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn1c.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme31sn1c.c  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
Assertion
Ref Expression
cdleme31sn1c  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Distinct variable groups:    t, s,
y, A    B, s    E, s    .\/ , s, t, y    .<_ , s, t, y    ./\ , s    P, s, t, y    Q, s, t, y    R, s, t, y    W, s
Allowed substitution hints:    B( y, t)    C( y, t, s)    D( y, t, s)    E( y, t)    G( y, t, s)    I( y, t, s)    ./\ ( y,
t)    N( y, t, s)    W( y, t)    Y( y, t, s)

Proof of Theorem cdleme31sn1c
StepHypRef Expression
1 cdleme31sn1c.i . . 3  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
2 cdleme31sn1c.n . . 3  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
3 eqid 2408 . . 3  |-  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) )  =  (
iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
41, 2, 3cdleme31sn1 30867 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
5 cdleme31sn1c.g . . . . . . . . 9  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
6 cdleme31sn1c.y . . . . . . . . 9  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
75, 6cdleme31se 30868 . . . . . . . 8  |-  ( R  e.  A  ->  [_ R  /  s ]_ G  =  Y )
87adantr 452 . . . . . . 7  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ G  =  Y )
98eqeq2d 2419 . . . . . 6  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
y  =  [_ R  /  s ]_ G  <->  y  =  Y ) )
109imbi2d 308 . . . . 5  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1110ralbidv 2690 . . . 4  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1211riotabidv 6514 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) ) )
13 cdleme31sn1c.c . . 3  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
1412, 13syl6eqr 2458 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  C )
154, 14eqtrd 2440 1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   [_csb 3215   ifcif 3703   class class class wbr 4176  (class class class)co 6044   iota_crio 6505
This theorem is referenced by:  cdlemefs32sn1aw  30900  cdleme43fsv1snlem  30906  cdleme41sn3a  30919  cdleme40m  30953  cdleme40n  30954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-iota 5381  df-fv 5425  df-ov 6047  df-riota 6512
  Copyright terms: Public domain W3C validator