Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1c Unicode version

Theorem cdleme31sn1c 29844
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sn1c.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme31sn1c.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme31sn1c.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn1c.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme31sn1c.c  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
Assertion
Ref Expression
cdleme31sn1c  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Distinct variable groups:    t, s,
y, A    B, s    E, s    .\/ , s, t, y    .<_ , s, t, y    ./\ , s    P, s, t, y    Q, s, t, y    R, s, t, y    W, s
Allowed substitution hints:    B( y, t)    C( y, t, s)    D( y, t, s)    E( y, t)    G( y, t, s)    I( y, t, s)    ./\ ( y,
t)    N( y, t, s)    W( y, t)    Y( y, t, s)

Proof of Theorem cdleme31sn1c
StepHypRef Expression
1 cdleme31sn1c.i . . 3  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
2 cdleme31sn1c.n . . 3  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
3 eqid 2284 . . 3  |-  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) )  =  (
iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
41, 2, 3cdleme31sn1 29837 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
5 cdleme31sn1c.g . . . . . . . . 9  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
6 cdleme31sn1c.y . . . . . . . . 9  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
75, 6cdleme31se 29838 . . . . . . . 8  |-  ( R  e.  A  ->  [_ R  /  s ]_ G  =  Y )
87adantr 453 . . . . . . 7  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ G  =  Y )
98eqeq2d 2295 . . . . . 6  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
y  =  [_ R  /  s ]_ G  <->  y  =  Y ) )
109imbi2d 309 . . . . 5  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1110ralbidv 2564 . . . 4  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1211riotabidv 6301 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) ) )
13 cdleme31sn1c.c . . 3  |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
1412, 13syl6eqr 2334 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  C )
154, 14eqtrd 2316 1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1628    e. wcel 1688   A.wral 2544   [_csb 3082   ifcif 3566   class class class wbr 4024  (class class class)co 5819   iota_crio 6290
This theorem is referenced by:  cdlemefs32sn1aw  29870  cdleme43fsv1snlem  29876  cdleme41sn3a  29889  cdleme40m  29923  cdleme40n  29924
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229  df-ov 5822  df-iota 6252  df-riota 6299
  Copyright terms: Public domain W3C validator