Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn2 Unicode version

Theorem cdleme31sn2 29267
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme32sn2.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sn2.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn2.c  |-  C  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme31sn2  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  C
)
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s
Allowed substitution hints:    C( s)    D( s)    I( s)    N( s)

Proof of Theorem cdleme31sn2
StepHypRef Expression
1 cdleme31sn2.n . . . . 5  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
2 eqid 2253 . . . . 5  |-  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)
31, 2cdleme31sn 29258 . . . 4  |-  ( R  e.  A  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  / 
s ]_ I ,  [_ R  /  s ]_ D
) )
43adantr 453 . . 3  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
) )
5 iffalse 3477 . . . . 5  |-  ( -.  R  .<_  ( P  .\/  Q )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  [_ R  /  s ]_ D
)
6 cdleme32sn2.d . . . . . 6  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
76csbeq2i 3035 . . . . 5  |-  [_ R  /  s ]_ D  =  [_ R  /  s ]_ ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
85, 7syl6eq 2301 . . . 4  |-  ( -.  R  .<_  ( P  .\/  Q )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  [_ R  /  s ]_ (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) ) )
9 nfcvd 2386 . . . . 5  |-  ( R  e.  A  ->  F/_ s
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
10 oveq1 5717 . . . . . 6  |-  ( s  =  R  ->  (
s  .\/  U )  =  ( R  .\/  U ) )
11 oveq2 5718 . . . . . . . 8  |-  ( s  =  R  ->  ( P  .\/  s )  =  ( P  .\/  R
) )
1211oveq1d 5725 . . . . . . 7  |-  ( s  =  R  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
1312oveq2d 5726 . . . . . 6  |-  ( s  =  R  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
1410, 13oveq12d 5728 . . . . 5  |-  ( s  =  R  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
159, 14csbiegf 3049 . . . 4  |-  ( R  e.  A  ->  [_ R  /  s ]_ (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
168, 15sylan9eqr 2307 . . 3  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  if ( R 
.<_  ( P  .\/  Q
) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  ( ( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
174, 16eqtrd 2285 . 2  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
18 cdleme31sn2.c . 2  |-  C  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
1917, 18syl6eqr 2303 1  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   [_csb 3009   ifcif 3470   class class class wbr 3920  (class class class)co 5710
This theorem is referenced by:  cdlemefr32sn2aw  29282  cdleme43frv1snN  29286  cdlemefr31fv1  29289  cdleme35sn2aw  29336  cdleme35sn3a  29337
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fv 4608  df-ov 5713
  Copyright terms: Public domain W3C validator