Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31so Unicode version

Theorem cdleme31so 29818
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
Hypotheses
Ref Expression
cdleme31so.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31so.c  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
Assertion
Ref Expression
cdleme31so  |-  ( X  e.  B  ->  [_ X  /  x ]_ O  =  C )
Distinct variable groups:    x, A    x, B    x,  .\/    x,  .<_    x,  ./\    x, N    x, s, z, X    x, W
Allowed substitution hints:    A( z, s)    B( z, s)    C( x, z, s)    .\/ ( z, s)    .<_ ( z, s)    ./\ ( z, s)    N( z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31so
StepHypRef Expression
1 nfcvd 2395 . . 3  |-  ( X  e.  B  ->  F/_ x
( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
2 oveq1 5799 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
32oveq2d 5808 . . . . . . . 8  |-  ( x  =  X  ->  (
s  .\/  ( x  ./\ 
W ) )  =  ( s  .\/  ( X  ./\  W ) ) )
4 id 21 . . . . . . . 8  |-  ( x  =  X  ->  x  =  X )
53, 4eqeq12d 2272 . . . . . . 7  |-  ( x  =  X  ->  (
( s  .\/  (
x  ./\  W )
)  =  x  <->  ( s  .\/  ( X  ./\  W
) )  =  X ) )
65anbi2d 687 . . . . . 6  |-  ( x  =  X  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) ) )
72oveq2d 5808 . . . . . . 7  |-  ( x  =  X  ->  ( N  .\/  ( x  ./\  W ) )  =  ( N  .\/  ( X 
./\  W ) ) )
87eqeq2d 2269 . . . . . 6  |-  ( x  =  X  ->  (
z  =  ( N 
.\/  ( x  ./\  W ) )  <->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
96, 8imbi12d 313 . . . . 5  |-  ( x  =  X  ->  (
( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) ) )
109ralbidv 2538 . . . 4  |-  ( x  =  X  ->  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
1110riotabidv 6274 . . 3  |-  ( x  =  X  ->  ( iota_ z  e.  B A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
121, 11csbiegf 3096 . 2  |-  ( X  e.  B  ->  [_ X  /  x ]_ ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
13 cdleme31so.o . . 3  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
1413csbeq2i 3082 . 2  |-  [_ X  /  x ]_ O  = 
[_ X  /  x ]_ ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
15 cdleme31so.c . 2  |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
1612, 14, 153eqtr4g 2315 1  |-  ( X  e.  B  ->  [_ X  /  x ]_ O  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   [_csb 3056   class class class wbr 3997  (class class class)co 5792   iota_crio 6263
This theorem is referenced by:  cdleme31fv1s  29831  cdlemefrs32fva  29839  cdleme32fva  29876
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fv 4689  df-ov 5795  df-iota 6225  df-riota 6272
  Copyright terms: Public domain W3C validator