Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32e Unicode version

Theorem cdleme32e 29913
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b  |-  B  =  ( Base `  K
)
cdleme32.l  |-  .<_  =  ( le `  K )
cdleme32.j  |-  .\/  =  ( join `  K )
cdleme32.m  |-  ./\  =  ( meet `  K )
cdleme32.a  |-  A  =  ( Atoms `  K )
cdleme32.h  |-  H  =  ( LHyp `  K
)
cdleme32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme32.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdleme32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme32.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme32.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme32e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y
) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z   
y, C    D, s,
y, z    y, E    H, s, t    .\/ , s,
t, x, y, z    K, s, t    .<_ , s, t, x, y, z    ./\ , s,
t, x, y, z   
x, N, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    X, s, t, x, z   
y, H    y, K    y, Y    z, H    z, K    Y, s, t, x, z
Allowed substitution hints:    C( x, z, t, s)    D( x, t)    E( x, z, t, s)    F( x, y, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y,
t, s)    O( x, y, z, t, s)    X( y)

Proof of Theorem cdleme32e
StepHypRef Expression
1 simp23l 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  P  =/=  Q )
21pm2.24d 135 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( -.  P  =/=  Q  ->  X  .<_  ( N  .\/  ( Y  ./\  W
) ) ) )
3 simp11l 1066 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  K  e.  HL )
4 hllat 28832 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  K  e.  Lat )
6 simp21l 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  e.  B )
7 simp11r 1067 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  W  e.  H )
8 cdleme32.b . . . . . . 7  |-  B  =  ( Base `  K
)
9 cdleme32.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
108, 9lhpbase 29466 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
117, 10syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  W  e.  B )
12 cdleme32.l . . . . . 6  |-  .<_  =  ( le `  K )
13 cdleme32.m . . . . . 6  |-  ./\  =  ( meet `  K )
148, 12, 13latleeqm1 14181 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  .<_  W  <->  ( X  ./\ 
W )  =  X ) )
155, 6, 11, 14syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  W  <->  ( X  ./\ 
W )  =  X ) )
168, 13latmcl 14153 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
175, 6, 11, 16syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  e.  B )
18 simp21r 1073 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  Y  e.  B )
198, 13latmcl 14153 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  e.  B )
205, 18, 11, 19syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Y  ./\  W )  e.  B )
21 simp11 985 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
22 simp12 986 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
23 simp13 987 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
24 simp31 991 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
25 cdleme32.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
26 cdleme32.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
27 cdleme32.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
28 cdleme32.c . . . . . . . . 9  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
29 cdleme32.d . . . . . . . . 9  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
30 cdleme32.e . . . . . . . . 9  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
31 cdleme32.i . . . . . . . . 9  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
32 cdleme32.n . . . . . . . . 9  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
338, 12, 25, 13, 26, 9, 27, 28, 29, 30, 31, 32cdleme27cl 29834 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  P  =/=  Q
) )  ->  N  e.  B )
3421, 22, 23, 24, 1, 33syl122anc 1191 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  N  e.  B )
358, 25latjcl 14152 . . . . . . 7  |-  ( ( K  e.  Lat  /\  N  e.  B  /\  ( Y  ./\  W )  e.  B )  -> 
( N  .\/  ( Y  ./\  W ) )  e.  B )
365, 34, 20, 35syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( N  .\/  ( Y  ./\  W ) )  e.  B
)
37 simp33 993 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  .<_  Y )
388, 12, 13latmlem1 14183 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  W  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) ) )
395, 6, 18, 11, 38syl13anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  Y  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) ) )
4037, 39mpd 14 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) )
418, 12, 25latlej2 14163 . . . . . . 7  |-  ( ( K  e.  Lat  /\  N  e.  B  /\  ( Y  ./\  W )  e.  B )  -> 
( Y  ./\  W
)  .<_  ( N  .\/  ( Y  ./\  W ) ) )
425, 34, 20, 41syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Y  ./\  W )  .<_  ( N  .\/  ( Y 
./\  W ) ) )
438, 12, 5, 17, 20, 36, 40, 42lattrd 14160 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  .<_  ( N  .\/  ( Y 
./\  W ) ) )
44 breq1 4027 . . . . 5  |-  ( ( X  ./\  W )  =  X  ->  ( ( X  ./\  W )  .<_  ( N  .\/  ( Y  ./\  W ) )  <-> 
X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
4543, 44syl5ibcom 211 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
( X  ./\  W
)  =  X  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
4615, 45sylbid 206 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  W  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
47 simp22 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )
48 pm4.53 478 . . . 4  |-  ( -.  ( P  =/=  Q  /\  -.  X  .<_  W )  <-> 
( -.  P  =/= 
Q  \/  X  .<_  W ) )
4947, 48sylib 188 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( -.  P  =/=  Q  \/  X  .<_  W ) )
502, 46, 49mpjaod 370 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) )
51 cdleme32.f . . . 4  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
5251cdleme31fv2 29861 . . 3  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  X )
536, 47, 52syl2anc 642 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  =  X )
54 simp1 955 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
55 simp23 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( P  =/=  Q  /\  -.  Y  .<_  W ) )
56 simp32 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
s  .\/  ( Y  ./\ 
W ) )  =  Y )
57 cdleme32.o . . . 4  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
588, 12, 25, 13, 26, 9, 27, 28, 29, 30, 31, 32, 57, 51cdleme32a 29909 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( Y  e.  B  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( Y  ./\  W ) )  =  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y 
./\  W ) ) )
5954, 18, 55, 24, 56, 58syl122anc 1191 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y  ./\  W ) ) )
6050, 53, 593brtr4d 4054 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   ifcif 3566   class class class wbr 4024    e. cmpt 4078   ` cfv 5221  (class class class)co 5820   iota_crio 6291   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Latclat 14147   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem is referenced by:  cdleme32f  29914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-llines 28966  df-lplanes 28967  df-lvols 28968  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456
  Copyright terms: Public domain W3C validator