Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme35c Unicode version

Theorem cdleme35c 30709
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
Hypotheses
Ref Expression
cdleme35.l  |-  .<_  =  ( le `  K )
cdleme35.j  |-  .\/  =  ( join `  K )
cdleme35.m  |-  ./\  =  ( meet `  K )
cdleme35.a  |-  A  =  ( Atoms `  K )
cdleme35.h  |-  H  =  ( LHyp `  K
)
cdleme35.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme35.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme35c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  F )  =  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) )

Proof of Theorem cdleme35c
StepHypRef Expression
1 cdleme35.f . . 3  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
21oveq2i 5956 . 2  |-  ( Q 
.\/  F )  =  ( Q  .\/  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
3 simp11l 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  K  e.  HL )
4 simp13l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  Q  e.  A )
5 simp2rl 1024 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  R  e.  A )
6 simp11 985 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8 simp2l 981 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  P  =/=  Q )
9 cdleme35.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 cdleme35.j . . . . . . 7  |-  .\/  =  ( join `  K )
11 cdleme35.m . . . . . . 7  |-  ./\  =  ( meet `  K )
12 cdleme35.a . . . . . . 7  |-  A  =  ( Atoms `  K )
13 cdleme35.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
14 cdleme35.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
159, 10, 11, 12, 13, 14cdleme0a 30469 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
166, 7, 4, 8, 15syl112anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  U  e.  A )
17 eqid 2358 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1817, 10, 12hlatjcl 29625 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
193, 5, 16, 18syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
20 hllat 29622 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213, 20syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  K  e.  Lat )
2217, 12atbase 29548 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
234, 22syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  Q  e.  ( Base `  K
) )
24 simp12l 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  P  e.  A )
2517, 10, 12hlatjcl 29625 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
263, 24, 5, 25syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
27 simp11r 1067 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  W  e.  H )
2817, 13lhpbase 30256 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2927, 28syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  W  e.  ( Base `  K
) )
3017, 11latmcl 14256 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
3121, 26, 29, 30syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )
3217, 10latjcl 14255 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
3321, 23, 31, 32syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
3417, 9, 10latlej1 14265 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  Q  .<_  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) )
3521, 23, 31, 34syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  Q  .<_  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) )
3617, 9, 10, 11, 12atmod1i1 30115 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( R  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)  /\  Q  .<_  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  ->  ( Q  .\/  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )  =  ( ( Q  .\/  ( R  .\/  U ) )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
373, 4, 19, 33, 35, 36syl131anc 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) ) )  =  ( ( Q  .\/  ( R  .\/  U ) ) 
./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
389, 10, 11, 12, 13, 14, 1cdleme35b 30708 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  .<_  ( Q 
.\/  ( R  .\/  U ) ) )
3917, 10latjcl 14255 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( R  .\/  U )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( R  .\/  U ) )  e.  (
Base `  K )
)
4021, 23, 19, 39syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( R  .\/  U ) )  e.  (
Base `  K )
)
4117, 9, 11latleeqm2 14285 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( R  .\/  U
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  .<_  ( Q 
.\/  ( R  .\/  U ) )  <->  ( ( Q  .\/  ( R  .\/  U ) )  ./\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) )
4221, 33, 40, 41syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  (
( P  .\/  R
)  ./\  W )
)  .<_  ( Q  .\/  ( R  .\/  U ) )  <->  ( ( Q 
.\/  ( R  .\/  U ) )  ./\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) )
4338, 42mpbid 201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  ( R  .\/  U ) ) 
./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
4437, 43eqtrd 2390 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) ) )  =  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )
452, 44syl5eq 2402 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  F )  =  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   Basecbs 13245   lecple 13312   joincjn 14177   meetcmee 14178   Latclat 14250   Atomscatm 29522   HLchlt 29609   LHypclh 30242
This theorem is referenced by:  cdleme35d  30710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246
  Copyright terms: Public domain W3C validator