Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme35sn2aw Unicode version

Theorem cdleme35sn2aw 30572
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one outside of  P  .\/  Q line case; compare cdleme32sn2awN 30548. TODO: FIX COMMENT (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme32s.b  |-  B  =  ( Base `  K
)
cdleme32s.l  |-  .<_  =  ( le `  K )
cdleme32s.j  |-  .\/  =  ( join `  K )
cdleme32s.m  |-  ./\  =  ( meet `  K )
cdleme32s.a  |-  A  =  ( Atoms `  K )
cdleme32s.h  |-  H  =  ( LHyp `  K
)
cdleme32s.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32s.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32s.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
Assertion
Ref Expression
cdleme35sn2aw  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
Distinct variable groups:    A, s    B, s    H, s    .\/ , s    K, s    .<_ , s    ./\ , s    P, s    Q, s    R, s    S, s    U, s    W, s
Allowed substitution hints:    D( s)    I(
s)    N( s)

Proof of Theorem cdleme35sn2aw
StepHypRef Expression
1 cdleme32s.l . . 3  |-  .<_  =  ( le `  K )
2 cdleme32s.j . . 3  |-  .\/  =  ( join `  K )
3 cdleme32s.m . . 3  |-  ./\  =  ( meet `  K )
4 cdleme32s.a . . 3  |-  A  =  ( Atoms `  K )
5 cdleme32s.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdleme32s.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 eqid 2387 . . 3  |-  ( ( R  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  =  ( ( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
8 eqid 2387 . . 3  |-  ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
91, 2, 3, 4, 5, 6, 7, 8cdleme35h2 30571 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  =/=  (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
10 simp22l 1076 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  R  e.  A )
11 simp31 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  -.  R  .<_  ( P  .\/  Q ) )
12 cdleme32s.d . . . 4  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
13 cdleme32s.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
1412, 13, 7cdleme31sn2 30503 . . 3  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
1510, 11, 14syl2anc 643 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  [_ R  /  s ]_ N  =  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) ) )
16 simp23l 1078 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  S  e.  A )
17 simp32 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
1812, 13, 8cdleme31sn2 30503 . . 3  |-  ( ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  [_ S  /  s ]_ N  =  (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
1916, 17, 18syl2anc 643 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  [_ S  /  s ]_ N  =  ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) ) )
209, 15, 193netr4d 2577 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S
) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   [_csb 3194   ifcif 3682   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Atomscatm 29378   HLchlt 29465   LHypclh 30098
This theorem is referenced by:  cdleme41snaw  30590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102
  Copyright terms: Public domain W3C validator