Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme36a Structured version   Unicode version

Theorem cdleme36a 31158
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 11-Mar-2013.)
Hypotheses
Ref Expression
cdleme36.b  |-  B  =  ( Base `  K
)
cdleme36.l  |-  .<_  =  ( le `  K )
cdleme36.j  |-  .\/  =  ( join `  K )
cdleme36.m  |-  ./\  =  ( meet `  K )
cdleme36.a  |-  A  =  ( Atoms `  K )
cdleme36.h  |-  H  =  ( LHyp `  K
)
cdleme36.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme36.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
Assertion
Ref Expression
cdleme36a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( t  .\/  E ) )

Proof of Theorem cdleme36a
StepHypRef Expression
1 simp3r 986 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  -.  t  .<_  ( P  .\/  Q ) )
2 simp11l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
3 simp22l 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
4 simp3ll 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  t  e.  A )
5 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp12 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
8 simp21 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
9 cdleme36.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme36.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme36.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme36.a . . . . . 6  |-  A  =  ( Atoms `  K )
13 cdleme36.h . . . . . 6  |-  H  =  ( LHyp `  K
)
14 cdleme36.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
159, 10, 11, 12, 13, 14cdleme0a 30909 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
165, 6, 7, 8, 15syl112anc 1188 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  U  e.  A )
17 simp12l 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
18 simp22 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
199, 10, 11, 12, 13, 14cdleme0c 30911 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  U  =/=  R )
205, 17, 7, 18, 19syl121anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  R )
2120necomd 2681 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  R  =/=  U )
229, 10, 12hlatexch2 30094 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  t  e.  A  /\  U  e.  A
)  /\  R  =/=  U )  ->  ( R  .<_  ( t  .\/  U
)  ->  t  .<_  ( R  .\/  U ) ) )
232, 3, 4, 16, 21, 22syl131anc 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( t  .\/  U )  ->  t  .<_  ( R  .\/  U ) ) )
24 simp3l 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
25 cdleme36.e . . . . . 6  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
269, 10, 11, 12, 13, 14, 25cdleme1 30925 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( t  .\/  E )  =  ( t  .\/  U ) )
275, 17, 7, 24, 26syl13anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  (
t  .\/  E )  =  ( t  .\/  U ) )
2827breq2d 4216 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( t  .\/  E )  <->  R  .<_  ( t 
.\/  U ) ) )
29 simp23 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
309, 10, 11, 12, 13, 14cdleme4 30936 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
315, 17, 7, 18, 29, 30syl131anc 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  U
) )
3231breq2d 4216 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  (
t  .<_  ( P  .\/  Q )  <->  t  .<_  ( R 
.\/  U ) ) )
3323, 28, 323imtr4d 260 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( t  .\/  E )  ->  t  .<_  ( P  .\/  Q ) ) )
341, 33mtod 170 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( t  .\/  E ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   meetcmee 14392   Atomscatm 29962   HLchlt 30049   LHypclh 30682
This theorem is referenced by:  cdleme36m  31159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-psubsp 30201  df-pmap 30202  df-padd 30494  df-lhyp 30686
  Copyright terms: Public domain W3C validator