Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme38m Unicode version

Theorem cdleme38m 29902
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 13-Mar-2013.)
Hypotheses
Ref Expression
cdleme38.l  |-  .<_  =  ( le `  K )
cdleme38.j  |-  .\/  =  ( join `  K )
cdleme38.m  |-  ./\  =  ( meet `  K )
cdleme38.a  |-  A  =  ( Atoms `  K )
cdleme38.h  |-  H  =  ( LHyp `  K
)
cdleme38.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme38.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme38.d  |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
cdleme38.v  |-  V  =  ( ( t  .\/  E )  ./\  W )
cdleme38.x  |-  X  =  ( ( u  .\/  D )  ./\  W )
cdleme38.f  |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )
cdleme38.g  |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme38m  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )

Proof of Theorem cdleme38m
StepHypRef Expression
1 simp1 960 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp2 961 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )
3 simp311 1107 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
4 simp312 1108 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  S  .<_  ( P  .\/  Q ) )
5 simp313 1109 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  F  =  G )
63, 4jca 520 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q ) ) )
7 simp32 997 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )
8 simp33 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) )
9 cdleme38.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme38.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme38.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme38.a . . . . . 6  |-  A  =  ( Atoms `  K )
13 cdleme38.h . . . . . 6  |-  H  =  ( LHyp `  K
)
14 cdleme38.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme38.e . . . . . 6  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdleme38.d . . . . . 6  |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
17 cdleme38.v . . . . . 6  |-  V  =  ( ( t  .\/  E )  ./\  W )
18 cdleme38.x . . . . . 6  |-  X  =  ( ( u  .\/  D )  ./\  W )
19 eqid 2258 . . . . . 6  |-  ( ( S  .\/  V ) 
./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )
20 cdleme38.g . . . . . 6  |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
) )
219, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme37m 29901 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q ) )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( ( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( S  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  G )
221, 2, 6, 7, 8, 21syl113anc 1199 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  G )
235, 22eqtr4d 2293 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S ) 
./\  W ) ) ) )
243, 4, 233jca 1137 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) ) ) )
25 eqid 2258 . . 3  |-  ( Base `  K )  =  (
Base `  K )
26 cdleme38.f . . 3  |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )
2725, 9, 10, 11, 12, 13, 14, 15, 17, 26, 19cdleme36m 29900 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S ) 
./\  W ) ) ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )
281, 2, 24, 7, 27syl112anc 1191 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdleme38n  29903
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427
  Copyright terms: Public domain W3C validator