Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme39a Unicode version

Theorem cdleme39a 30579
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT.  E,  Y,  G,  Z serve as f(t), f(u), ft( R), ft( S). Put hypotheses of cdleme38n 30578 in convention of cdleme32sn1awN 30546. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
Hypotheses
Ref Expression
cdleme39.l  |-  .<_  =  ( le `  K )
cdleme39.j  |-  .\/  =  ( join `  K )
cdleme39.m  |-  ./\  =  ( meet `  K )
cdleme39.a  |-  A  =  ( Atoms `  K )
cdleme39.h  |-  H  =  ( LHyp `  K
)
cdleme39.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme39.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme39.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme39a.v  |-  V  =  ( ( t  .\/  E )  ./\  W )
Assertion
Ref Expression
cdleme39a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  G  =  ( ( R  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) ) )

Proof of Theorem cdleme39a
StepHypRef Expression
1 cdleme39.g . 2  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
2 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp12 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  P  e.  A
)
4 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  Q  e.  A
)
5 simp2 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
6 simp3l 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  R  .<_  ( P 
.\/  Q ) )
7 cdleme39.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdleme39.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdleme39.m . . . . . 6  |-  ./\  =  ( meet `  K )
10 cdleme39.a . . . . . 6  |-  A  =  ( Atoms `  K )
11 cdleme39.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdleme39.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
137, 8, 9, 10, 11, 12cdleme4 30352 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
142, 3, 4, 5, 6, 13syl131anc 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
15 cdleme39a.v . . . . . 6  |-  V  =  ( ( t  .\/  E )  ./\  W )
16 simp3r 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( t  e.  A  /\  -.  t  .<_  W ) )
17 cdleme39.e . . . . . . . 8  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
187, 8, 9, 10, 11, 12, 17cdleme2 30342 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( (
t  .\/  E )  ./\  W )  =  U )
192, 3, 4, 16, 18syl13anc 1186 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( ( t 
.\/  E )  ./\  W )  =  U )
2015, 19syl5eq 2431 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  V  =  U )
2120oveq2d 6036 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( R  .\/  V )  =  ( R 
.\/  U ) )
2214, 21eqtr4d 2422 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  V ) )
23 simp11l 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  K  e.  HL )
24 simp2l 983 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  R  e.  A
)
25 simp3rl 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  t  e.  A
)
268, 10hlatjcom 29482 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  t  e.  A )  ->  ( R  .\/  t
)  =  ( t 
.\/  R ) )
2723, 24, 25, 26syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( R  .\/  t )  =  ( t  .\/  R ) )
2827oveq1d 6035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( ( R 
.\/  t )  ./\  W )  =  ( ( t  .\/  R ) 
./\  W ) )
2928oveq2d 6036 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( E  .\/  ( ( R  .\/  t )  ./\  W
) )  =  ( E  .\/  ( ( t  .\/  R ) 
./\  W ) ) )
3022, 29oveq12d 6038 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t ) 
./\  W ) ) )  =  ( ( R  .\/  V ) 
./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) ) )
311, 30syl5eq 2431 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  G  =  ( ( R  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   lecple 13463   joincjn 14328   meetcmee 14329   Atomscatm 29378   HLchlt 29465   LHypclh 30098
This theorem is referenced by:  cdleme39n  30580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102
  Copyright terms: Public domain W3C validator