Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3b Unicode version

Theorem cdleme3b 30715
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 30722 and cdleme3 30723. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme3b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)

Proof of Theorem cdleme3b
StepHypRef Expression
1 simpll 731 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 simpr3l 1018 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A
)
3 eqid 2408 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 cdleme1.a . . . . 5  |-  A  =  ( Atoms `  K )
53, 4atbase 29776 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
62, 5syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  (
Base `  K )
)
7 hllat 29850 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
87ad2antrr 707 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
9 cdleme1.f . . . . 5  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
10 cdleme1.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
11 cdleme1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
12 cdleme1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
13 cdleme1.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
14 cdleme1.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
1510, 11, 12, 4, 13, 14lhpat2 30531 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
16153adant3r3 1164 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  A
)
173, 4atbase 29776 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1816, 17syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  (
Base `  K )
)
193, 11latjcl 14438 . . . . . . 7  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
208, 6, 18, 19syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  e.  ( Base `  K ) )
21 simpr2l 1016 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A
)
223, 4atbase 29776 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2321, 22syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  (
Base `  K )
)
24 simpr1l 1014 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A
)
253, 4atbase 29776 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2624, 25syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  (
Base `  K )
)
273, 11latjcl 14438 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
288, 26, 6, 27syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  R )  e.  ( Base `  K ) )
293, 13lhpbase 30484 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3029ad2antlr 708 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  (
Base `  K )
)
313, 12latmcl 14439 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
328, 28, 30, 31syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  R )  ./\  W )  e.  ( Base `  K ) )
333, 11latjcl 14438 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
348, 23, 32, 33syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )
353, 12latmcl 14439 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  (
Base `  K )
)
368, 20, 34, 35syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  ( Base `  K ) )
379, 36syl5eqel 2492 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  e.  (
Base `  K )
)
383, 11latjcl 14438 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  F  e.  ( Base `  K
) )  ->  ( R  .\/  F )  e.  ( Base `  K
) )
398, 6, 37, 38syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  e.  ( Base `  K ) )
403, 11latjcl 14438 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
418, 26, 23, 40syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
423, 10, 12latmle2 14465 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
438, 41, 30, 42syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
4414, 43syl5eqbr 4209 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
45 simpr3r 1019 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  -.  R  .<_  W )
46 nbrne2 4194 . . . . . . 7  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4744, 45, 46syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  =/=  R
)
4847necomd 2654 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  U
)
49 eqid 2408 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
5011, 49, 4atcvr1 29903 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
511, 2, 16, 50syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/= 
U  <->  R (  <o  `  K
) ( R  .\/  U ) ) )
5248, 51mpbid 202 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  U ) )
53 simpr3 965 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5424, 21, 533jca 1134 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
5510, 11, 12, 4, 13, 14, 9cdleme1 30713 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
5654, 55syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R 
.\/  U ) )
5752, 56breqtrrd 4202 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  F ) )
583, 49cvrne 29768 . . 3  |-  ( ( ( K  e.  HL  /\  R  e.  ( Base `  K )  /\  ( R  .\/  F )  e.  ( Base `  K
) )  /\  R
(  <o  `  K )
( R  .\/  F
) )  ->  R  =/=  ( R  .\/  F
) )
591, 6, 39, 57, 58syl31anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  ( R  .\/  F ) )
60 oveq2 6052 . . . . . 6  |-  ( F  =  R  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6160adantl 453 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6211, 4hlatjidm 29855 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
631, 2, 62syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  R )  =  R )
6463adantr 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  R )  =  R )
6561, 64eqtr2d 2441 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  R  =  ( R  .\/  F ) )
6665ex 424 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( F  =  R  ->  R  =  ( R  .\/  F ) ) )
6766necon3d 2609 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/=  ( R  .\/  F
)  ->  F  =/=  R ) )
6859, 67mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   Basecbs 13428   lecple 13495   joincjn 14360   meetcmee 14361   Latclat 14433    <o ccvr 29749   Atomscatm 29750   HLchlt 29837   LHypclh 30470
This theorem is referenced by:  cdleme36m  30947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474
  Copyright terms: Public domain W3C validator