Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3b Unicode version

Theorem cdleme3b 29697
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29704 and cdleme3 29705. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme3b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)

Proof of Theorem cdleme3b
StepHypRef Expression
1 simpll 730 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 simpr3l 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A
)
3 eqid 2284 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 cdleme1.a . . . . 5  |-  A  =  ( Atoms `  K )
53, 4atbase 28758 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
62, 5syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  (
Base `  K )
)
7 hllat 28832 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
87ad2antrr 706 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
9 cdleme1.f . . . . 5  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
10 cdleme1.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
11 cdleme1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
12 cdleme1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
13 cdleme1.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
14 cdleme1.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
1510, 11, 12, 4, 13, 14lhpat2 29513 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
16153adant3r3 1162 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  A
)
173, 4atbase 28758 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1816, 17syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  (
Base `  K )
)
193, 11latjcl 14152 . . . . . . 7  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
208, 6, 18, 19syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  e.  ( Base `  K ) )
21 simpr2l 1014 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A
)
223, 4atbase 28758 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2321, 22syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  (
Base `  K )
)
24 simpr1l 1012 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A
)
253, 4atbase 28758 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2624, 25syl 15 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  (
Base `  K )
)
273, 11latjcl 14152 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
288, 26, 6, 27syl3anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  R )  e.  ( Base `  K ) )
293, 13lhpbase 29466 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3029ad2antlr 707 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  (
Base `  K )
)
313, 12latmcl 14153 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
328, 28, 30, 31syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  R )  ./\  W )  e.  ( Base `  K ) )
333, 11latjcl 14152 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
348, 23, 32, 33syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )
353, 12latmcl 14153 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  (
Base `  K )
)
368, 20, 34, 35syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  ( Base `  K ) )
379, 36syl5eqel 2368 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  e.  (
Base `  K )
)
383, 11latjcl 14152 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  F  e.  ( Base `  K
) )  ->  ( R  .\/  F )  e.  ( Base `  K
) )
398, 6, 37, 38syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  e.  ( Base `  K ) )
403, 11latjcl 14152 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
418, 26, 23, 40syl3anc 1182 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
423, 10, 12latmle2 14179 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
438, 41, 30, 42syl3anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
4414, 43syl5eqbr 4057 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
45 simpr3r 1017 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  -.  R  .<_  W )
46 nbrne2 4042 . . . . . . 7  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4744, 45, 46syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  =/=  R
)
4847necomd 2530 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  U
)
49 eqid 2284 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
5011, 49, 4atcvr1 28885 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
511, 2, 16, 50syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/= 
U  <->  R (  <o  `  K
) ( R  .\/  U ) ) )
5248, 51mpbid 201 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  U ) )
53 simpr3 963 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5424, 21, 533jca 1132 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
5510, 11, 12, 4, 13, 14, 9cdleme1 29695 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
5654, 55syldan 456 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R 
.\/  U ) )
5752, 56breqtrrd 4050 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  F ) )
583, 49cvrne 28750 . . 3  |-  ( ( ( K  e.  HL  /\  R  e.  ( Base `  K )  /\  ( R  .\/  F )  e.  ( Base `  K
) )  /\  R
(  <o  `  K )
( R  .\/  F
) )  ->  R  =/=  ( R  .\/  F
) )
591, 6, 39, 57, 58syl31anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  ( R  .\/  F ) )
60 oveq2 5828 . . . . . 6  |-  ( F  =  R  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6160adantl 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6211, 4hlatjidm 28837 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
631, 2, 62syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  R )  =  R )
6463adantr 451 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  R )  =  R )
6561, 64eqtr2d 2317 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  R  =  ( R  .\/  F ) )
6665ex 423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( F  =  R  ->  R  =  ( R  .\/  F ) ) )
6766necon3d 2485 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/=  ( R  .\/  F
)  ->  F  =/=  R ) )
6859, 67mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Latclat 14147    <o ccvr 28731   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem is referenced by:  cdleme36m  29929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456
  Copyright terms: Public domain W3C validator