Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3c Unicode version

Theorem cdleme3c 29687
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29693 and cdleme3 29694. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme3c.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
cdleme3c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  .0.  )

Proof of Theorem cdleme3c
StepHypRef Expression
1 simpll 732 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 hllat 28821 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 708 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
4 simpr3l 1018 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A
)
5 eqid 2285 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 28747 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
84, 7syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  (
Base `  K )
)
9 hlop 28820 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
109ad2antrr 708 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OP )
11 cdleme3c.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
125, 11op0cl 28642 . . . . . 6  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
1310, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  .0.  e.  ( Base `  K ) )
14 cdleme1.j . . . . . 6  |-  .\/  =  ( join `  K )
155, 14latjcl 14151 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  .0.  e.  ( Base `  K
) )  ->  ( R  .\/  .0.  )  e.  ( Base `  K
) )
163, 8, 13, 15syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  e.  ( Base `  K ) )
17 simpl 445 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simpr1l 1014 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A
)
19 simpr2l 1016 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A
)
20 cdleme1.l . . . . . . 7  |-  .<_  =  ( le `  K )
21 cdleme1.m . . . . . . 7  |-  ./\  =  ( meet `  K )
22 cdleme1.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
23 cdleme1.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
24 cdleme1.f . . . . . . 7  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2520, 14, 21, 6, 22, 23, 24, 5cdleme1b 29683 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  ( Base `  K ) )
2617, 18, 19, 4, 25syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  e.  (
Base `  K )
)
275, 14latjcl 14151 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  F  e.  ( Base `  K
) )  ->  ( R  .\/  F )  e.  ( Base `  K
) )
283, 8, 26, 27syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  e.  ( Base `  K ) )
295, 6atbase 28747 . . . . . . . . . . . 12  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3018, 29syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  (
Base `  K )
)
315, 6atbase 28747 . . . . . . . . . . . 12  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3219, 31syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  (
Base `  K )
)
335, 14latjcl 14151 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
343, 30, 32, 33syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
355, 22lhpbase 29455 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3635ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  (
Base `  K )
)
375, 20, 21latmle2 14178 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
383, 34, 36, 37syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
3923, 38syl5eqbr 4058 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
40 simpr3r 1019 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  -.  R  .<_  W )
41 nbrne2 4043 . . . . . . . 8  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4239, 40, 41syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  =/=  R
)
4342necomd 2531 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  U
)
4420, 14, 21, 6, 22, 23lhpat2 29502 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
45443adant3r3 1164 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  A
)
46 eqid 2285 . . . . . . . 8  |-  (  <o  `  K )  =  ( 
<o  `  K )
4714, 46, 6atcvr1 28874 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
481, 4, 45, 47syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/= 
U  <->  R (  <o  `  K
) ( R  .\/  U ) ) )
4943, 48mpbid 203 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  U ) )
50 hlol 28819 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
5150ad2antrr 708 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OL )
525, 14, 11olj01 28683 . . . . . 6  |-  ( ( K  e.  OL  /\  R  e.  ( Base `  K ) )  -> 
( R  .\/  .0.  )  =  R )
5351, 8, 52syl2anc 644 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  =  R
)
54 simpr3 965 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5520, 14, 21, 6, 22, 23, 24cdleme1 29684 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
5617, 18, 19, 54, 55syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R 
.\/  U ) )
5749, 53, 563brtr4d 4055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  ) (  <o  `  K
) ( R  .\/  F ) )
585, 46cvrne 28739 . . . 4  |-  ( ( ( K  e.  HL  /\  ( R  .\/  .0.  )  e.  ( Base `  K )  /\  ( R  .\/  F )  e.  ( Base `  K
) )  /\  ( R  .\/  .0.  ) ( 
<o  `  K ) ( R  .\/  F ) )  ->  ( R  .\/  .0.  )  =/=  ( R  .\/  F ) )
591, 16, 28, 57, 58syl31anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  =/=  ( R  .\/  F ) )
60 oveq2 5828 . . . 4  |-  (  .0.  =  F  ->  ( R  .\/  .0.  )  =  ( R  .\/  F
) )
6160necon3i 2487 . . 3  |-  ( ( R  .\/  .0.  )  =/=  ( R  .\/  F
)  ->  .0.  =/=  F )
6259, 61syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  .0.  =/=  F
)
6362necomd 2531 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   Basecbs 13143   lecple 13210   joincjn 14073   meetcmee 14074   0.cp0 14138   Latclat 14146   OPcops 28630   OLcol 28632    <o ccvr 28720   Atomscatm 28721   HLchlt 28808   LHypclh 29441
This theorem is referenced by:  cdleme3h  29692
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445
  Copyright terms: Public domain W3C validator