Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3fa Unicode version

Theorem cdleme3fa 30722
Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 30723. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme3fa  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )

Proof of Theorem cdleme3fa
StepHypRef Expression
1 cdleme1.l . 2  |-  .<_  =  ( le `  K )
2 cdleme1.j . 2  |-  .\/  =  ( join `  K )
3 cdleme1.m . 2  |-  ./\  =  ( meet `  K )
4 cdleme1.a . 2  |-  A  =  ( Atoms `  K )
5 cdleme1.h . 2  |-  H  =  ( LHyp `  K
)
6 cdleme1.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme1.f . 2  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
8 eqid 2408 . 2  |-  ( ( P  .\/  R ) 
./\  W )  =  ( ( P  .\/  R )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3h 30721 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   lecple 13495   joincjn 14360   meetcmee 14361   Atomscatm 29750   HLchlt 29837   LHypclh 30470
This theorem is referenced by:  cdleme3  30723  cdleme7d  30732  cdleme7ga  30734  cdleme11j  30753  cdleme11k  30754  cdleme11  30756  cdleme14  30759  cdleme15a  30760  cdleme16b  30765  cdleme16c  30766  cdleme16d  30767  cdleme16e  30768  cdleme16f  30769  cdleme19d  30792  cdleme20f  30800  cdleme20l1  30806  cdleme20l2  30807  cdleme22f2  30833  cdleme22g  30834  cdlemefr32sn2aw  30890  cdleme35a  30934  cdleme36m  30947  cdleme43bN  30976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474
  Copyright terms: Public domain W3C validator