Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3g Unicode version

Theorem cdleme3g 29112
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29114 and cdleme3 29115. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme3.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme3g  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  U )

Proof of Theorem cdleme3g
StepHypRef Expression
1 cdleme1.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme1.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme1.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme1.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme1.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme1.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme1.f . . . 4  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
8 cdleme3.3 . . . 4  |-  V  =  ( ( P  .\/  R )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 29109 . . 3  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )
10 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
11 hllat 28242 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1210, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
13 simp23l 1081 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
14 simp1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
15 simp21 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simp22l 1079 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
17 simp3l 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
181, 2, 3, 4, 5, 6lhpat2 28923 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
1914, 15, 16, 17, 18syl112anc 1191 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  e.  A )
20 eqid 2253 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2120, 2, 4hlatjcl 28245 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
2210, 13, 19, 21syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  U )  e.  (
Base `  K )
)
23 simp3r 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
2413, 23jca 520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q
) ) )
251, 2, 3, 4, 5, 6, 7, 8cdleme3e 29110 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) ) ) )  ->  V  e.  A )
2614, 15, 16, 24, 25syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  e.  A )
2720, 2, 4hlatjcl 28245 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .\/  V
)  e.  ( Base `  K ) )
2810, 16, 26, 27syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .\/  V )  e.  (
Base `  K )
)
2920, 1, 3latmle2 14027 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( Q  .\/  V )  e.  (
Base `  K )
)  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )  .<_  ( Q  .\/  V ) )
3012, 22, 28, 29syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )  .<_  ( Q  .\/  V ) )
319, 30syl5eqbr 3953 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  .<_  ( Q  .\/  V ) )
32 simp22r 1080 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  W )
33 simp23 995 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
34 simp3 962 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )
351, 2, 3, 4, 5, 6, 8cdleme0e 29095 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
3614, 15, 16, 33, 34, 35syl131anc 1200 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  =/=  V )
371, 2, 4hlatexch2 28274 . . . . 5  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  Q  e.  A  /\  V  e.  A
)  /\  U  =/=  V )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  ( U  .\/  V ) ) )
3810, 19, 16, 26, 36, 37syl131anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  ( U  .\/  V ) ) )
39 simp21l 1077 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
4020, 2, 4hlatjcl 28245 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4110, 39, 16, 40syl3anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
42 simp1r 985 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
4320, 5lhpbase 28876 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4442, 43syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  ( Base `  K )
)
4520, 1, 3latmle2 14027 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4612, 41, 44, 45syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
476, 46syl5eqbr 3953 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  .<_  W )
4820, 2, 4hlatjcl 28245 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
4910, 39, 13, 48syl3anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
5020, 1, 3latmle2 14027 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
5112, 49, 44, 50syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
528, 51syl5eqbr 3953 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  .<_  W )
5320, 4atbase 28168 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
5419, 53syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  e.  ( Base `  K )
)
5520, 4atbase 28168 . . . . . . . 8  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
5626, 55syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  e.  ( Base `  K )
)
5720, 1, 2latjle12 14012 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  V  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( U  .<_  W  /\  V  .<_  W )  <-> 
( U  .\/  V
)  .<_  W ) )
5812, 54, 56, 44, 57syl13anc 1189 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( U  .<_  W  /\  V  .<_  W )  <->  ( U  .\/  V )  .<_  W ) )
5947, 52, 58mpbi2and 892 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .\/  V )  .<_  W )
6020, 4atbase 28168 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
6116, 60syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  ( Base `  K )
)
6220, 2, 4hlatjcl 28245 . . . . . . 7  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  e.  ( Base `  K ) )
6310, 19, 26, 62syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .\/  V )  e.  (
Base `  K )
)
6420, 1lattr 14006 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( U  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( U 
.\/  V )  /\  ( U  .\/  V ) 
.<_  W )  ->  Q  .<_  W ) )
6512, 61, 63, 44, 64syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( Q  .<_  ( U  .\/  V )  /\  ( U 
.\/  V )  .<_  W )  ->  Q  .<_  W ) )
6659, 65mpan2d 658 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .<_  ( U  .\/  V
)  ->  Q  .<_  W ) )
6738, 66syld 42 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  W ) )
6832, 67mtod 170 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  U  .<_  ( Q  .\/  V
) )
69 nbrne2 3938 . 2  |-  ( ( F  .<_  ( Q  .\/  V )  /\  -.  U  .<_  ( Q  .\/  V ) )  ->  F  =/=  U )
7031, 68, 69syl2anc 645 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  U )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28142   HLchlt 28229   LHypclh 28862
This theorem is referenced by:  cdleme3  29115  cdleme16b  29157  cdleme35a  29326
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-lhyp 28866
  Copyright terms: Public domain W3C validator