Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3g Structured version   Unicode version

Theorem cdleme3g 31033
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 31035 and cdleme3 31036. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme3.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme3g  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  U )

Proof of Theorem cdleme3g
StepHypRef Expression
1 cdleme1.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme1.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme1.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme1.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme1.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme1.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme1.f . . . 4  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
8 cdleme3.3 . . . 4  |-  V  =  ( ( P  .\/  R )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 31030 . . 3  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )
10 simp1l 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
11 hllat 30163 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1210, 11syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
13 simp23l 1079 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
14 simp1 958 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
15 simp21 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simp22l 1077 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
17 simp3l 986 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
181, 2, 3, 4, 5, 6lhpat2 30844 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
1914, 15, 16, 17, 18syl112anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  e.  A )
20 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2120, 2, 4hlatjcl 30166 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
2210, 13, 19, 21syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  U )  e.  (
Base `  K )
)
23 simp3r 987 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
2413, 23jca 520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q
) ) )
251, 2, 3, 4, 5, 6, 7, 8cdleme3e 31031 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) ) ) )  ->  V  e.  A )
2614, 15, 16, 24, 25syl13anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  e.  A )
2720, 2, 4hlatjcl 30166 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .\/  V
)  e.  ( Base `  K ) )
2810, 16, 26, 27syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .\/  V )  e.  (
Base `  K )
)
2920, 1, 3latmle2 14508 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( Q  .\/  V )  e.  (
Base `  K )
)  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )  .<_  ( Q  .\/  V ) )
3012, 22, 28, 29syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )  .<_  ( Q  .\/  V ) )
319, 30syl5eqbr 4247 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  .<_  ( Q  .\/  V ) )
32 simp22r 1078 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  W )
33 simp23 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
34 simp3 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )
351, 2, 3, 4, 5, 6, 8cdleme0e 31016 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
3614, 15, 16, 33, 34, 35syl131anc 1198 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  =/=  V )
371, 2, 4hlatexch2 30195 . . . . 5  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  Q  e.  A  /\  V  e.  A
)  /\  U  =/=  V )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  ( U  .\/  V ) ) )
3810, 19, 16, 26, 36, 37syl131anc 1198 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  ( U  .\/  V ) ) )
39 simp21l 1075 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
4020, 2, 4hlatjcl 30166 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4110, 39, 16, 40syl3anc 1185 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
42 simp1r 983 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
4320, 5lhpbase 30797 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4442, 43syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  ( Base `  K )
)
4520, 1, 3latmle2 14508 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4612, 41, 44, 45syl3anc 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
476, 46syl5eqbr 4247 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  .<_  W )
4820, 2, 4hlatjcl 30166 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
4910, 39, 13, 48syl3anc 1185 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
5020, 1, 3latmle2 14508 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
5112, 49, 44, 50syl3anc 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
528, 51syl5eqbr 4247 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  .<_  W )
5320, 4atbase 30089 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
5419, 53syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  U  e.  ( Base `  K )
)
5520, 4atbase 30089 . . . . . . . 8  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
5626, 55syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  V  e.  ( Base `  K )
)
5720, 1, 2latjle12 14493 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  V  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( U  .<_  W  /\  V  .<_  W )  <-> 
( U  .\/  V
)  .<_  W ) )
5812, 54, 56, 44, 57syl13anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( U  .<_  W  /\  V  .<_  W )  <->  ( U  .\/  V )  .<_  W ) )
5947, 52, 58mpbi2and 889 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .\/  V )  .<_  W )
6020, 4atbase 30089 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
6116, 60syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  ( Base `  K )
)
6220, 2, 4hlatjcl 30166 . . . . . . 7  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  e.  ( Base `  K ) )
6310, 19, 26, 62syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .\/  V )  e.  (
Base `  K )
)
6420, 1lattr 14487 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( U  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( U 
.\/  V )  /\  ( U  .\/  V ) 
.<_  W )  ->  Q  .<_  W ) )
6512, 61, 63, 44, 64syl13anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( Q  .<_  ( U  .\/  V )  /\  ( U 
.\/  V )  .<_  W )  ->  Q  .<_  W ) )
6659, 65mpan2d 657 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .<_  ( U  .\/  V
)  ->  Q  .<_  W ) )
6738, 66syld 43 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  ( U  .<_  ( Q  .\/  V
)  ->  Q  .<_  W ) )
6832, 67mtod 171 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  U  .<_  ( Q  .\/  V
) )
69 nbrne2 4232 . 2  |-  ( ( F  .<_  ( Q  .\/  V )  /\  -.  U  .<_  ( Q  .\/  V ) )  ->  F  =/=  U )
7031, 68, 69syl2anc 644 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   joincjn 14403   meetcmee 14404   Latclat 14476   Atomscatm 30063   HLchlt 30150   LHypclh 30783
This theorem is referenced by:  cdleme3  31036  cdleme16b  31078  cdleme35a  31247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 29976  df-ol 29978  df-oml 29979  df-covers 30066  df-ats 30067  df-atl 30098  df-cvlat 30122  df-hlat 30151  df-lhyp 30787
  Copyright terms: Public domain W3C validator