Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40w Unicode version

Theorem cdleme40w 30956
Description: Part of proof of Lemma E in [Crawley] p. 113. Apply cdleme40v 30955 bound variable change to  [_ S  /  u ]_ V. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b  |-  B  =  ( Base `  K
)
cdleme40.l  |-  .<_  =  ( le `  K )
cdleme40.j  |-  .\/  =  ( join `  K )
cdleme40.m  |-  ./\  =  ( meet `  K )
cdleme40.a  |-  A  =  ( Atoms `  K )
cdleme40.h  |-  H  =  ( LHyp `  K
)
cdleme40.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme40.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme40.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme40.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme40.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme40.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme40r.y  |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
Assertion
Ref Expression
cdleme40w  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/= 
S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N
)
Distinct variable groups:    u, A    u, B    u,  .\/    u,  .<_    u,  ./\    u, P    u, Q    u, S    u, W    t, s,
y, A    B, s,
t, y    E, s    t, H, y    .\/ , s,
t, y    t, K, y   
.<_ , s, t, y    ./\ , s,
t, y    P, s,
t, y    Q, s,
t, y    R, s,
t, y    t, U, y    W, s, t, y   
y, Y    t, S, y    y, E    u, N    S, s, u    U, s, u, t, y
Allowed substitution hints:    D( y, u, t, s)    R( u)    E( u, t)    G( y, u, t, s)    H( u, s)    I( y, u, t, s)    K( u, s)    N( y, t, s)    Y( u, t, s)

Proof of Theorem cdleme40w
Dummy variables  v 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdleme40.b . . 3  |-  B  =  ( Base `  K
)
2 cdleme40.l . . 3  |-  .<_  =  ( le `  K )
3 cdleme40.j . . 3  |-  .\/  =  ( join `  K )
4 cdleme40.m . . 3  |-  ./\  =  ( meet `  K )
5 cdleme40.a . . 3  |-  A  =  ( Atoms `  K )
6 cdleme40.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdleme40.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme40.e . . 3  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdleme40.g . . 3  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdleme40.i . . 3  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
11 cdleme40.n . . 3  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
12 eqid 2408 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
13 eqid 2408 . . 3  |-  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )
14 eqid 2408 . . 3  |-  ( ( v  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )
15 eqid 2408 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( ( ( v  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( S  .\/  v )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( S  .\/  v )  ./\  W
) ) )
16 eqid 2408 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( ( ( v  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )
17 eqid 2408 . . 3  |-  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) )  =  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) )
18 eqid 2408 . . 3  |-  if ( u  .<_  ( P  .\/  Q ) ,  (
iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  ( ( P 
.\/  Q )  ./\  ( ( ( v 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v ) 
./\  W ) ) )  .\/  ( ( u  .\/  v ) 
./\  W ) ) ) ) ) ,  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) )  =  if ( u 
.<_  ( P  .\/  Q
) ,  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  ( ( u  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) )
19 eqid 2408 . . 3  |-  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( S  .\/  v )  ./\  W
) ) ) ) )  =  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( S  .\/  v )  ./\  W
) ) ) ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme40n 30954 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/= 
S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  u ]_ if ( u  .<_  ( P  .\/  Q ) ,  (
iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  ( ( P 
.\/  Q )  ./\  ( ( ( v 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v ) 
./\  W ) ) )  .\/  ( ( u  .\/  v ) 
./\  W ) ) ) ) ) ,  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) ) )
21 simp23l 1078 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/= 
S ) )  ->  S  e.  A )
22 cdleme40.d . . . 4  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
23 eqid 2408 . . . 4  |-  ( ( u  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 22, 23, 14, 16, 17, 18cdleme40v 30955 . . 3  |-  ( S  e.  A  ->  [_ S  /  s ]_ N  =  [_ S  /  u ]_ if ( u  .<_  ( P  .\/  Q ) ,  ( iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( (
( v  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  ( ( u  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) ) )
2521, 24syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/= 
S ) )  ->  [_ S  /  s ]_ N  =  [_ S  /  u ]_ if ( u  .<_  ( P  .\/  Q ) ,  (
iota_ z  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  ( ( P 
.\/  Q )  ./\  ( ( ( v 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v ) 
./\  W ) ) )  .\/  ( ( u  .\/  v ) 
./\  W ) ) ) ) ) ,  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) ) )
2620, 25neeqtrrd 2595 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/= 
S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   [_csb 3215   ifcif 3703   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   iota_crio 6505   Basecbs 13428   lecple 13495   joincjn 14360   meetcmee 14361   Atomscatm 29750   HLchlt 29837   LHypclh 30470
This theorem is referenced by:  cdleme41snaw  30962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474
  Copyright terms: Public domain W3C validator