Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42a Unicode version

Theorem cdleme42a 29927
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 3-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b  |-  B  =  ( Base `  K
)
cdleme42.l  |-  .<_  =  ( le `  K )
cdleme42.j  |-  .\/  =  ( join `  K )
cdleme42.m  |-  ./\  =  ( meet `  K )
cdleme42.a  |-  A  =  ( Atoms `  K )
cdleme42.h  |-  H  =  ( LHyp `  K
)
cdleme42.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )

Proof of Theorem cdleme42a
StepHypRef Expression
1 cdleme42.l . . . . 5  |-  .<_  =  ( le `  K )
2 cdleme42.j . . . . 5  |-  .\/  =  ( join `  K )
3 eqid 2284 . . . . 5  |-  ( 1.
`  K )  =  ( 1. `  K
)
4 cdleme42.a . . . . 5  |-  A  =  ( Atoms `  K )
5 cdleme42.h . . . . 5  |-  H  =  ( LHyp `  K
)
61, 2, 3, 4, 5lhpjat2 29477 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
763adant3 977 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  W )  =  ( 1. `  K ) )
87oveq2d 5835 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( ( R  .\/  S ) 
./\  ( 1. `  K ) ) )
9 cdleme42.v . . . 4  |-  V  =  ( ( R  .\/  S )  ./\  W )
109oveq2i 5830 . . 3  |-  ( R 
.\/  V )  =  ( R  .\/  (
( R  .\/  S
)  ./\  W )
)
11 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  HL )
12 simp2l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  e.  A )
13 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  S  e.  A )
14 cdleme42.b . . . . . 6  |-  B  =  ( Base `  K
)
1514, 2, 4hlatjcl 28823 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
1611, 12, 13, 15syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  e.  B
)
17 simp1r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  H )
1814, 5lhpbase 29454 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
1917, 18syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  B )
201, 2, 4hlatlej1 28831 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  R  .<_  ( R  .\/  S ) )
2111, 12, 13, 20syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  .<_  ( R  .\/  S ) )
22 cdleme42.m . . . . 5  |-  ./\  =  ( meet `  K )
2314, 1, 2, 22, 4atmod3i1 29320 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  S
)  e.  B  /\  W  e.  B )  /\  R  .<_  ( R 
.\/  S ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2411, 12, 16, 19, 21, 23syl131anc 1197 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2510, 24syl5req 2329 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( R 
.\/  V ) )
26 hlol 28818 . . . 4  |-  ( K  e.  HL  ->  K  e.  OL )
2711, 26syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  OL )
2814, 22, 3olm11 28684 . . 3  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  B )  -> 
( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2927, 16, 28syl2anc 644 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R 
.\/  S ) )
308, 25, 293eqtr3rd 2325 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   1.cp1 14138   OLcol 28631   Atomscatm 28720   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdleme42d  29929  cdleme42f  29936  cdleme42g  29937  cdleme42keg  29942  cdleme43cN  29947
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444
  Copyright terms: Public domain W3C validator