Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42keg Unicode version

Theorem cdleme42keg 30748
Description: Part of proof of Lemma E in [Crawley] p. 113. Remove  P  =/= 
Q condition. TODO: FIX COMMENT TODO: Use instead of cdleme42ke 30747 and even combine with it? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdleme41.b  |-  B  =  ( Base `  K
)
cdleme41.l  |-  .<_  =  ( le `  K )
cdleme41.j  |-  .\/  =  ( join `  K )
cdleme41.m  |-  ./\  =  ( meet `  K )
cdleme41.a  |-  A  =  ( Atoms `  K )
cdleme41.h  |-  H  =  ( LHyp `  K
)
cdleme41.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme41.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme41.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme41.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme41.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme41.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme41.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme41.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme34e.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42keg  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  (
( F `  R
)  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V
) )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    S, s    U, s    W, s    y, t, A, s    B, s, t, y    y, D    y, G    E, s,
y    H, s, t, y   
t,  .\/ , y    K, s, t, y    t,  .<_ , y   
t,  ./\ , y    t, P, y    t, Q, y    t, R, y    t, S, y   
t, U, y    t, W, y    x, z, A   
x, B, z    z, E, s    z, H    x,  .\/ , z    z, K    x,  .<_ , z    x,  ./\ , z    x, N, z    x, P, z   
x, Q, z    x, R, z    x, S, z   
x, U, z    x, W, z, s, t, y    V, s, t, x, z
Allowed substitution hints:    D( x, z, t, s)    E( x, t)    F( x, y, z, t, s)    G( x, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y, t, s)    O( x, y, z, t, s)    V( y)

Proof of Theorem cdleme42keg
StepHypRef Expression
1 simpll1 994 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simplrl 736 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 simplrr 737 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
4 cdleme41.b . . . . 5  |-  B  =  ( Base `  K
)
5 cdleme41.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdleme41.j . . . . 5  |-  .\/  =  ( join `  K )
7 cdleme41.m . . . . 5  |-  ./\  =  ( meet `  K )
8 cdleme41.a . . . . 5  |-  A  =  ( Atoms `  K )
9 cdleme41.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdleme34e.v . . . . 5  |-  V  =  ( ( R  .\/  S )  ./\  W )
114, 5, 6, 7, 8, 9, 10cdleme42a 30733 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )
121, 2, 3, 11syl3anc 1182 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( R  .\/  S )  =  ( R  .\/  V
) )
13 simprll 738 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  A )
144, 8atbase 29552 . . . . . 6  |-  ( R  e.  A  ->  R  e.  B )
1513, 14syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  B )
16 cdleme41.f . . . . . 6  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
1716cdleme31id 30656 . . . . 5  |-  ( ( R  e.  B  /\  P  =  Q )  ->  ( F `  R
)  =  R )
1815, 17sylan 457 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( F `  R )  =  R )
19 simprrl 740 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  A )
204, 8atbase 29552 . . . . . 6  |-  ( S  e.  A  ->  S  e.  B )
2119, 20syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  B )
2216cdleme31id 30656 . . . . 5  |-  ( ( S  e.  B  /\  P  =  Q )  ->  ( F `  S
)  =  S )
2321, 22sylan 457 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( F `  S )  =  S )
2418, 23oveq12d 5878 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  (
( F `  R
)  .\/  ( F `  S ) )  =  ( R  .\/  S
) )
2518oveq1d 5875 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  (
( F `  R
)  .\/  V )  =  ( R  .\/  V ) )
2612, 24, 253eqtr4d 2327 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  (
( F `  R
)  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V
) )
27 simpll 730 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
28 simpr 447 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  P  =/=  Q )
29 simplrl 736 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
30 simplrr 737 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
31 cdleme41.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
32 cdleme41.d . . . 4  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
33 cdleme41.e . . . 4  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
34 cdleme41.g . . . 4  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
35 cdleme41.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
36 cdleme41.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
37 cdleme41.o . . . 4  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
384, 5, 6, 7, 8, 9, 31, 32, 33, 34, 35, 36, 37, 16, 10cdleme42ke 30747 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( F `  S ) )  =  ( ( F `  R ) 
.\/  V ) )
3927, 28, 29, 30, 38syl13anc 1184 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  (
( F `  R
)  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V
) )
4026, 39pm2.61dane 2526 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  (
( F `  R
)  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   HLchlt 29613   LHypclh 30246
This theorem is referenced by:  cdlemg2klem  30857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250
  Copyright terms: Public domain W3C validator