Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42mgN Unicode version

Theorem cdleme42mgN 29946
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT . f preserves join: f(r  \/ s) = f(r)  \/ s, p. 115 10th line from bottom. TODO: Use instead of cdleme42mN 29945? Combine with cdleme42mN 29945? (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme41.b  |-  B  =  ( Base `  K
)
cdleme41.l  |-  .<_  =  ( le `  K )
cdleme41.j  |-  .\/  =  ( join `  K )
cdleme41.m  |-  ./\  =  ( meet `  K )
cdleme41.a  |-  A  =  ( Atoms `  K )
cdleme41.h  |-  H  =  ( LHyp `  K
)
cdleme41.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme41.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme41.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme41.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme41.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme41.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme41.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme41.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme42mgN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
Distinct variable groups:    A, s    .\/ , s   
.<_ , s    ./\ , s    P, s    Q, s    R, s    S, s    U, s    W, s    y,
t, A, s    B, s, t, y    y, D   
y, G    E, s,
y    H, s, t, y   
t,  .\/ , y    K, s, t, y    t,  .<_ , y   
t,  ./\ , y    t, P, y    t, Q, y    t, R, y    t, S, y   
t, U, y    t, W, y    x, z, A   
x, B, z    z, E, s    z, H    x,  .\/ , z    z, K    x,  .<_ , z    x,  ./\ , z    x, N, z    x, P, z   
x, Q, z    x, R, z    x, S, z   
x, U, z    x, W, z, s, t, y
Allowed substitution groups:    D( x, z, t, s)    E( x, t)    F( x, y, z, t, s)    G( x, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y, t, s)    O( x, y, z, t, s)

Proof of Theorem cdleme42mgN
StepHypRef Expression
1 simpl1l 1008 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  HL )
2 hllat 28822 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  Lat )
4 simprll 740 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  A )
5 cdleme41.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme41.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28748 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
84, 7syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  B )
9 simprrl 742 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  A )
105, 6atbase 28748 . . . . 5  |-  ( S  e.  A  ->  S  e.  B )
119, 10syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  B )
123, 8, 113jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B ) )
13 cdleme41.j . . . . . 6  |-  .\/  =  ( join `  K )
145, 13latjcl 14152 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  ->  ( R  .\/  S
)  e.  B )
15 cdleme41.f . . . . . 6  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
1615cdleme31id 29852 . . . . 5  |-  ( ( ( R  .\/  S
)  e.  B  /\  P  =  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( R  .\/  S ) )
1714, 16sylan 459 . . . 4  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  ( R  .\/  S
) )  =  ( R  .\/  S ) )
1815cdleme31id 29852 . . . . . 6  |-  ( ( R  e.  B  /\  P  =  Q )  ->  ( F `  R
)  =  R )
19183ad2antl2 1120 . . . . 5  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  R )  =  R )
2015cdleme31id 29852 . . . . . 6  |-  ( ( S  e.  B  /\  P  =  Q )  ->  ( F `  S
)  =  S )
21203ad2antl3 1121 . . . . 5  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  S )  =  S )
2219, 21oveq12d 5839 . . . 4  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( ( F `  R )  .\/  ( F `  S
) )  =  ( R  .\/  S ) )
2317, 22eqtr4d 2321 . . 3  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  ( R  .\/  S
) )  =  ( ( F `  R
)  .\/  ( F `  S ) ) )
2412, 23sylan 459 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
25 simpll 732 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
26 simpr 449 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  P  =/=  Q )
27 simplrl 738 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
28 simplrr 739 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
29 cdleme41.l . . . 4  |-  .<_  =  ( le `  K )
30 cdleme41.m . . . 4  |-  ./\  =  ( meet `  K )
31 cdleme41.h . . . 4  |-  H  =  ( LHyp `  K
)
32 cdleme41.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
33 cdleme41.d . . . 4  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
34 cdleme41.e . . . 4  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
35 cdleme41.g . . . 4  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
36 cdleme41.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
37 cdleme41.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
38 cdleme41.o . . . 4  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
395, 29, 13, 30, 6, 31, 32, 33, 34, 35, 36, 37, 38, 15cdleme42mN 29945 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R ) 
.\/  ( F `  S ) ) )
4025, 26, 27, 28, 39syl13anc 1186 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
4124, 40pm2.61dane 2527 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687    =/= wne 2449   A.wral 2546   ifcif 3568   class class class wbr 4026    e. cmpt 4080   ` cfv 5223  (class class class)co 5821   iota_crio 6292   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Latclat 14147   Atomscatm 28722   HLchlt 28809   LHypclh 29442
This theorem is referenced by:  cdlemg2jlemOLDN  30051
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3831  df-iun 3910  df-iin 3911  df-br 4027  df-opab 4081  df-mpt 4082  df-id 4310  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-1st 6085  df-2nd 6086  df-iota 6254  df-undef 6293  df-riota 6301  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28635  df-ol 28637  df-oml 28638  df-covers 28725  df-ats 28726  df-atl 28757  df-cvlat 28781  df-hlat 28810  df-llines 28956  df-lplanes 28957  df-lvols 28958  df-lines 28959  df-psubsp 28961  df-pmap 28962  df-padd 29254  df-lhyp 29446
  Copyright terms: Public domain W3C validator