Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42mgN Unicode version

Theorem cdleme42mgN 29478
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT . f preserves join: f(r  \/ s) = f(r)  \/ s, p. 115 10th line from bottom. TODO: Use instead of cdleme42mN 29477? Combine with cdleme42mN 29477? (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme41.b  |-  B  =  ( Base `  K
)
cdleme41.l  |-  .<_  =  ( le `  K )
cdleme41.j  |-  .\/  =  ( join `  K )
cdleme41.m  |-  ./\  =  ( meet `  K )
cdleme41.a  |-  A  =  ( Atoms `  K )
cdleme41.h  |-  H  =  ( LHyp `  K
)
cdleme41.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme41.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme41.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme41.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme41.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme41.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme41.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme41.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme42mgN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    S, s    U, s    W, s    y, t, A, s    B, s, t, y    y, D    y, G    E, s,
y    H, s, t, y   
t,  .\/ , y    K, s, t, y    t,  .<_ , y   
t,  ./\ , y    t, P, y    t, Q, y    t, R, y    t, S, y   
t, U, y    t, W, y    x, z, A   
x, B, z    z, E, s    z, H    x,  .\/ , z    z, K    x,  .<_ , z    x,  ./\ , z    x, N, z    x, P, z   
x, Q, z    x, R, z    x, S, z   
x, U, z    x, W, z, s, t, y
Allowed substitution hints:    D( x, z, t, s)    E( x, t)    F( x, y, z, t, s)    G( x, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y, t, s)    O( x, y, z, t, s)

Proof of Theorem cdleme42mgN
StepHypRef Expression
1 simpl1l 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  HL )
2 hllat 28354 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  Lat )
4 simprll 741 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  A )
5 cdleme41.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme41.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28280 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
84, 7syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  B )
9 simprrl 743 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  A )
105, 6atbase 28280 . . . . 5  |-  ( S  e.  A  ->  S  e.  B )
119, 10syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  S  e.  B )
123, 8, 113jca 1137 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B ) )
13 cdleme41.j . . . . . 6  |-  .\/  =  ( join `  K )
145, 13latjcl 14000 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  ->  ( R  .\/  S
)  e.  B )
15 cdleme41.f . . . . . 6  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
1615cdleme31id 29384 . . . . 5  |-  ( ( ( R  .\/  S
)  e.  B  /\  P  =  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( R  .\/  S ) )
1714, 16sylan 459 . . . 4  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  ( R  .\/  S
) )  =  ( R  .\/  S ) )
1815cdleme31id 29384 . . . . . 6  |-  ( ( R  e.  B  /\  P  =  Q )  ->  ( F `  R
)  =  R )
19183ad2antl2 1123 . . . . 5  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  R )  =  R )
2015cdleme31id 29384 . . . . . 6  |-  ( ( S  e.  B  /\  P  =  Q )  ->  ( F `  S
)  =  S )
21203ad2antl3 1124 . . . . 5  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  S )  =  S )
2219, 21oveq12d 5728 . . . 4  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( ( F `  R )  .\/  ( F `  S
) )  =  ( R  .\/  S ) )
2317, 22eqtr4d 2288 . . 3  |-  ( ( ( K  e.  Lat  /\  R  e.  B  /\  S  e.  B )  /\  P  =  Q
)  ->  ( F `  ( R  .\/  S
) )  =  ( ( F `  R
)  .\/  ( F `  S ) ) )
2412, 23sylan 459 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
25 simpll 733 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
26 simpr 449 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  P  =/=  Q )
27 simplrl 739 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
28 simplrr 740 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
29 cdleme41.l . . . 4  |-  .<_  =  ( le `  K )
30 cdleme41.m . . . 4  |-  ./\  =  ( meet `  K )
31 cdleme41.h . . . 4  |-  H  =  ( LHyp `  K
)
32 cdleme41.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
33 cdleme41.d . . . 4  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
34 cdleme41.e . . . 4  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
35 cdleme41.g . . . 4  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
36 cdleme41.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
37 cdleme41.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
38 cdleme41.o . . . 4  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
395, 29, 13, 30, 6, 31, 32, 33, 34, 35, 36, 37, 38, 15cdleme42mN 29477 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R ) 
.\/  ( F `  S ) ) )
4025, 26, 27, 28, 39syl13anc 1189 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  P  =/=  Q )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
4124, 40pm2.61dane 2490 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   ifcif 3470   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28254   HLchlt 28341   LHypclh 28974
This theorem is referenced by:  cdlemg2jlemOLDN  29583
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lvols 28490  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978
  Copyright terms: Public domain W3C validator