Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43aN Unicode version

Theorem cdleme43aN 29928
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1) (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b  |-  B  =  ( Base `  K
)
cdleme43.l  |-  .<_  =  ( le `  K )
cdleme43.j  |-  .\/  =  ( join `  K )
cdleme43.m  |-  ./\  =  ( meet `  K )
cdleme43.a  |-  A  =  ( Atoms `  K )
cdleme43.h  |-  H  =  ( LHyp `  K
)
cdleme43.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme43.x  |-  X  =  ( ( Q  .\/  P )  ./\  W )
cdleme43.c  |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme43.f  |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme43.d  |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
cdleme43.g  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
cdleme43.e  |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
) )
cdleme43.v  |-  V  =  ( ( Z  .\/  S )  ./\  W )
cdleme43.y  |-  Y  =  ( ( R  .\/  D )  ./\  W )
Assertion
Ref Expression
cdleme43aN  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  G  =  ( ( P  .\/  Q ) 
./\  ( D  .\/  V ) ) )

Proof of Theorem cdleme43aN
StepHypRef Expression
1 cdleme43.j . . . 4  |-  .\/  =  ( join `  K )
2 cdleme43.a . . . 4  |-  A  =  ( Atoms `  K )
31, 2hlatjcom 28807 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
4 cdleme43.v . . . . 5  |-  V  =  ( ( Z  .\/  S )  ./\  W )
54oveq2i 5803 . . . 4  |-  ( D 
.\/  V )  =  ( D  .\/  (
( Z  .\/  S
)  ./\  W )
)
65a1i 12 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( D  .\/  V
)  =  ( D 
.\/  ( ( Z 
.\/  S )  ./\  W ) ) )
73, 6oveq12d 5810 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  .\/  Q )  ./\  ( D  .\/  V ) )  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) ) )
8 cdleme43.g . 2  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
97, 8syl6reqr 2309 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  G  =  ( ( P  .\/  Q ) 
./\  ( D  .\/  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-join 14073  df-lat 14115  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791
  Copyright terms: Public domain W3C validator