Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme4a Unicode version

Theorem cdleme4a 29229
Description: Part of proof of Lemma E in [Crawley] p. 114 top.  G represents fs(r). Auxiliary lemma derived from cdleme5 29230. We show fs(r)  <_ p  \/ q. (Contributed by NM, 10-Nov-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme4a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  G  .<_  ( P  .\/  Q
) )

Proof of Theorem cdleme4a
StepHypRef Expression
1 cdleme4.g . 2  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
2 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  K  e.  HL )
3 hllat 28354 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  K  e.  Lat )
5 simp21 993 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  P  e.  A )
6 simp22 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  Q  e.  A )
7 eqid 2253 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme4.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdleme4.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 28357 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
12 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  W  e.  H )
13 simp3 962 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  S  e.  A )
14 cdleme4.l . . . . . 6  |-  .<_  =  ( le `  K )
15 cdleme4.m . . . . . 6  |-  ./\  =  ( meet `  K )
16 cdleme4.h . . . . . 6  |-  H  =  ( LHyp `  K
)
17 cdleme4.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme4.f . . . . . 6  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
1914, 8, 15, 9, 16, 17, 18, 7cdleme1b 29216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
202, 12, 5, 6, 13, 19syl23anc 1194 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  F  e.  ( Base `  K
) )
21 simp23 995 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  R  e.  A )
227, 8, 9hlatjcl 28357 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
232, 21, 13, 22syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
247, 16lhpbase 28988 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2512, 24syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  W  e.  ( Base `  K
) )
267, 15latmcl 14001 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  ( Base `  K ) )
274, 23, 25, 26syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) )
287, 8latjcl 14000 . . . 4  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
294, 20, 27, 28syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
307, 14, 15latmle1 14026 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  .<_  ( P 
.\/  Q ) )
314, 11, 29, 30syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  .<_  ( P 
.\/  Q ) )
321, 31syl5eqbr 3953 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A )  ->  G  .<_  ( P  .\/  Q
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28254   HLchlt 28341   LHypclh 28974
This theorem is referenced by:  cdleme18c  29283  cdleme41sn3a  29423
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-glb 13953  df-meet 13955  df-lat 13996  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-lhyp 28978
  Copyright terms: Public domain W3C validator