Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme4gfv Unicode version

Theorem cdleme4gfv 29863
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: Can this replace uses of cdleme32a 29797? TODO: Can this be used to help prove the  R or  S case where  X is an atom? TODO: Would an antecedent transformer like cdleme46f2g2 29849 help? (Contributed by NM, 8-Apr-2013.)
Hypotheses
Ref Expression
cdlemef47.b  |-  B  =  ( Base `  K
)
cdlemef47.l  |-  .<_  =  ( le `  K )
cdlemef47.j  |-  .\/  =  ( join `  K )
cdlemef47.m  |-  ./\  =  ( meet `  K )
cdlemef47.a  |-  A  =  ( Atoms `  K )
cdlemef47.h  |-  H  =  ( LHyp `  K
)
cdlemef47.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef47.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs47.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef47.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
Assertion
Ref Expression
cdleme4gfv  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( G `  X )  =  ( ( G `  S
)  .\/  ( X  ./\ 
W ) ) )
Distinct variable groups:    a, b,
c, u, v, A    B, a, b, c, u, v    H, a, b, c, u, v    .\/ , a,
b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a,
b, c, u, v    N, a, b, c, u    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c, u, v    W, a, b, c, u, v    X, a, c, u, v
Allowed substitution hints:    G( v, u, a, b, c)    N( v)    O( v, u)    X( b)

Proof of Theorem cdleme4gfv
StepHypRef Expression
1 simp11 990 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp13 992 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp12 991 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp2l 986 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  P  =/=  Q )
54necomd 2504 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  Q  =/=  P )
6 simp2r 987 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
7 simp3 962 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )
8 cdlemef47.b . . 3  |-  B  =  ( Base `  K
)
9 cdlemef47.l . . 3  |-  .<_  =  ( le `  K )
10 cdlemef47.j . . 3  |-  .\/  =  ( join `  K )
11 cdlemef47.m . . 3  |-  ./\  =  ( meet `  K )
12 cdlemef47.a . . 3  |-  A  =  ( Atoms `  K )
13 cdlemef47.h . . 3  |-  H  =  ( LHyp `  K
)
14 cdlemef47.v . . 3  |-  V  =  ( ( Q  .\/  P )  ./\  W )
15 cdlemef47.n . . 3  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
16 cdlemefs47.o . . 3  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
17 cdlemef47.g . . 3  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme48fv 29855 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  =/=  P  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( G `  X )  =  ( ( G `  S
)  .\/  ( X  ./\ 
W ) ) )
191, 2, 3, 5, 6, 7, 18syl321anc 1209 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( G `  X )  =  ( ( G `  S
)  .\/  ( X  ./\ 
W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   [_csb 3056   ifcif 3539   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13110   lecple 13177   joincjn 14040   meetcmee 14041   Atomscatm 28620   HLchlt 28707   LHypclh 29340
This theorem is referenced by:  cdleme48d  29891
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344
  Copyright terms: Public domain W3C validator