Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ex Unicode version

Theorem cdleme50ex 30821
Description: Part of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l  |-  .<_  =  ( le `  K )
cdleme.a  |-  A  =  ( Atoms `  K )
cdleme.h  |-  H  =  ( LHyp `  K
)
cdleme.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdleme50ex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. f  e.  T  ( f `  P )  =  Q )
Distinct variable groups:    A, f    f, K    .<_ , f    P, f    Q, f    T, f    f, W
Allowed substitution hint:    H( f)

Proof of Theorem cdleme50ex
Dummy variables  s 
t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2285 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 cdleme.l . . 3  |-  .<_  =  ( le `  K )
3 eqid 2285 . . 3  |-  ( join `  K )  =  (
join `  K )
4 eqid 2285 . . 3  |-  ( meet `  K )  =  (
meet `  K )
5 cdleme.a . . 3  |-  A  =  ( Atoms `  K )
6 cdleme.h . . 3  |-  H  =  ( LHyp `  K
)
7 eqid 2285 . . 3  |-  ( ( P ( join `  K
) Q ) (
meet `  K ) W )  =  ( ( P ( join `  K ) Q ) ( meet `  K
) W )
8 eqid 2285 . . 3  |-  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )
9 eqid 2285 . . 3  |-  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )
10 eqid 2285 . . 3  |-  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )
11 cdleme.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ltrn 30819 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  e.  T )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme17d 30760 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( (
x  e.  ( Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q )
14 fveq1 5526 . . . 4  |-  ( f  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  ->  ( f `  P )  =  ( ( x  e.  (
Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  (
Base `  K ) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K
) ( x (
meet `  K ) W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P
( join `  K ) Q ) ,  (
iota_ y  e.  ( Base `  K ) A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K
) Q ) )  ->  y  =  ( ( P ( join `  K ) Q ) ( meet `  K
) ( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P ) )
1514eqeq1d 2293 . . 3  |-  ( f  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  ->  ( (
f `  P )  =  Q  <->  ( ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q ) )
1615rspcev 2886 . 2  |-  ( ( ( x  e.  (
Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  (
Base `  K ) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K
) ( x (
meet `  K ) W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P
( join `  K ) Q ) ,  (
iota_ y  e.  ( Base `  K ) A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K
) Q ) )  ->  y  =  ( ( P ( join `  K ) Q ) ( meet `  K
) ( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  e.  T  /\  ( ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q )  ->  E. f  e.  T  ( f `  P
)  =  Q )
1712, 13, 16syl2anc 642 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. f  e.  T  ( f `  P )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   E.wrex 2546   [_csb 3083   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   HLchlt 29613   LHypclh 30246   LTrncltrn 30363
This theorem is referenced by:  cdleme  30822  cdlemf  30825  dia2dimlem6  31332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-map 6776  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367
  Copyright terms: Public domain W3C validator