Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ex Unicode version

Theorem cdleme50ex 29549
Description: Part of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l  |-  .<_  =  ( le `  K )
cdleme.a  |-  A  =  ( Atoms `  K )
cdleme.h  |-  H  =  ( LHyp `  K
)
cdleme.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdleme50ex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. f  e.  T  ( f `  P )  =  Q )
Distinct variable groups:    A, f    f, K    .<_ , f    P, f    Q, f    T, f    f, W
Allowed substitution hint:    H( f)

Proof of Theorem cdleme50ex
StepHypRef Expression
1 eqid 2253 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 cdleme.l . . 3  |-  .<_  =  ( le `  K )
3 eqid 2253 . . 3  |-  ( join `  K )  =  (
join `  K )
4 eqid 2253 . . 3  |-  ( meet `  K )  =  (
meet `  K )
5 cdleme.a . . 3  |-  A  =  ( Atoms `  K )
6 cdleme.h . . 3  |-  H  =  ( LHyp `  K
)
7 eqid 2253 . . 3  |-  ( ( P ( join `  K
) Q ) (
meet `  K ) W )  =  ( ( P ( join `  K ) Q ) ( meet `  K
) W )
8 eqid 2253 . . 3  |-  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )
9 eqid 2253 . . 3  |-  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )
10 eqid 2253 . . 3  |-  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )
11 cdleme.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ltrn 29547 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  e.  T )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme17d 29488 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( (
x  e.  ( Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q )
14 fveq1 5376 . . . 4  |-  ( f  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  ->  ( f `  P )  =  ( ( x  e.  (
Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  (
Base `  K ) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K
) ( x (
meet `  K ) W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P
( join `  K ) Q ) ,  (
iota_ y  e.  ( Base `  K ) A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K
) Q ) )  ->  y  =  ( ( P ( join `  K ) Q ) ( meet `  K
) ( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P ) )
1514eqeq1d 2261 . . 3  |-  ( f  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  ->  ( (
f `  P )  =  Q  <->  ( ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q ) )
1615rcla4ev 2821 . 2  |-  ( ( ( x  e.  (
Base `  K )  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  (
Base `  K ) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K
) ( x (
meet `  K ) W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P
( join `  K ) Q ) ,  (
iota_ y  e.  ( Base `  K ) A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K
) Q ) )  ->  y  =  ( ( P ( join `  K ) Q ) ( meet `  K
) ( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  e.  T  /\  ( ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) ) `  P )  =  Q )  ->  E. f  e.  T  ( f `  P
)  =  Q )
1712, 13, 16syl2anc 645 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. f  e.  T  ( f `  P )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   [_csb 3009   ifcif 3470   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28254   HLchlt 28341   LHypclh 28974   LTrncltrn 29091
This theorem is referenced by:  cdleme  29550  cdlemf  29553  dia2dimlem6  30060
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lvols 28490  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978  df-laut 28979  df-ldil 29094  df-ltrn 29095
  Copyright terms: Public domain W3C validator