Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50lebi Unicode version

Theorem cdleme50lebi 30705
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b  |-  B  =  ( Base `  K
)
cdlemef50.l  |-  .<_  =  ( le `  K )
cdlemef50.j  |-  .\/  =  ( join `  K )
cdlemef50.m  |-  ./\  =  ( meet `  K )
cdlemef50.a  |-  A  =  ( Atoms `  K )
cdlemef50.h  |-  H  =  ( LHyp `  K
)
cdlemef50.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef50.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs50.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef50.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme50lebi  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
Distinct variable groups:    t, s, x, y, z,  ./\    .\/ , s,
t, x, y, z    .<_ , s, t, x, y, z    A, s, t, x, y, z    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    K, s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    X, s, t, x, y, z    Y, s, t, x, y, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme50lebi
Dummy variables  a 
b  c  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . 2  |-  B  =  ( Base `  K
)
2 cdlemef50.l . 2  |-  .<_  =  ( le `  K )
3 cdlemef50.j . 2  |-  .\/  =  ( join `  K )
4 cdlemef50.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemef50.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemef50.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemef50.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef50.d . 2  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs50.e . 2  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdlemef50.f . 2  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
11 eqid 2380 . 2  |-  ( ( Q  .\/  P ) 
./\  W )  =  ( ( Q  .\/  P )  ./\  W )
12 eqid 2380 . 2  |-  ( ( v  .\/  ( ( Q  .\/  P ) 
./\  W ) ) 
./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  =  ( ( v  .\/  ( ( Q  .\/  P )  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
13 eqid 2380 . 2  |-  ( ( Q  .\/  P ) 
./\  ( ( ( v  .\/  ( ( Q  .\/  P ) 
./\  W ) ) 
./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )  =  ( ( Q  .\/  P )  ./\  ( (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )
14 eqid 2380 . 2  |-  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u  .\/  ( a 
./\  W ) )  =  a )  -> 
c  =  ( if ( u  .<_  ( Q 
.\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q  .\/  P
) )  ->  b  =  ( ( Q 
.\/  P )  ./\  ( ( ( v 
.\/  ( ( Q 
.\/  P )  ./\  W ) )  ./\  ( P  .\/  ( ( Q 
.\/  v )  ./\  W ) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  [_ u  /  v ]_ (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) ) ) 
.\/  ( a  ./\  W ) ) ) ) ,  a ) )  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u  .\/  ( a 
./\  W ) )  =  a )  -> 
c  =  ( if ( u  .<_  ( Q 
.\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q  .\/  P
) )  ->  b  =  ( ( Q 
.\/  P )  ./\  ( ( ( v 
.\/  ( ( Q 
.\/  P )  ./\  W ) )  ./\  ( P  .\/  ( ( Q 
.\/  v )  ./\  W ) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  [_ u  /  v ]_ (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) ) ) 
.\/  ( a  ./\  W ) ) ) ) ,  a ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemeg49lebilem 30704 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   [_csb 3187   ifcif 3675   class class class wbr 4146    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   iota_crio 6471   Basecbs 13389   lecple 13456   joincjn 14321   meetcmee 14322   Atomscatm 29429   HLchlt 29516   LHypclh 30149
This theorem is referenced by:  cdleme50eq  30706  cdleme50laut  30712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153
  Copyright terms: Public domain W3C validator