Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ltrn Unicode version

Theorem cdleme50ltrn 29996
Description: Part of proof of Lemma E in [Crawley] p. 113.  F is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b  |-  B  =  ( Base `  K
)
cdlemef50.l  |-  .<_  =  ( le `  K )
cdlemef50.j  |-  .\/  =  ( join `  K )
cdlemef50.m  |-  ./\  =  ( meet `  K )
cdlemef50.a  |-  A  =  ( Atoms `  K )
cdlemef50.h  |-  H  =  ( LHyp `  K
)
cdlemef50.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef50.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs50.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef50.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdleme50ltrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdleme50ltrn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
Distinct variable groups:    t, s, x, y, z,  ./\    .\/ , s,
t, x, y, z    .<_ , s, t, x, y, z    A, s, t, x, y, z    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    K, s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z
Allowed substitution hints:    D( t)    T( x, y, z, t, s)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme50ltrn
StepHypRef Expression
1 cdlemef50.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemef50.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemef50.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemef50.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemef50.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemef50.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemef50.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef50.d . . 3  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs50.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdlemef50.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
11 eqid 2258 . . 3  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ldil 29987 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  ( ( LDil `  K
) `  W )
)
13 simp1 960 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
14 simp2l 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  d  e.  A
)
15 simp3l 988 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  -.  d  .<_  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 29993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  -.  d  .<_  W ) )  ->  ( (
d  .\/  ( F `  d ) )  ./\  W )  =  U )
1713, 14, 15, 16syl12anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  U )
18 simp2r 987 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  e  e.  A
)
19 simp3r 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  -.  e  .<_  W )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 29993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( e  e.  A  /\  -.  e  .<_  W ) )  ->  ( (
e  .\/  ( F `  e ) )  ./\  W )  =  U )
2113, 18, 19, 20syl12anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( e 
.\/  ( F `  e ) )  ./\  W )  =  U )
2217, 21eqtr4d 2293 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  ( ( e  .\/  ( F `
 e ) ) 
./\  W ) )
23223exp 1155 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( (
d  e.  A  /\  e  e.  A )  ->  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) )
2423ralrimivv 2609 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  A. d  e.  A  A. e  e.  A  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  ( ( e  .\/  ( F `
 e ) ) 
./\  W ) ) )
25 cdleme50ltrn.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
262, 3, 4, 5, 6, 11, 25isltrn 29558 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  ( (
LDil `  K ) `  W )  /\  A. d  e.  A  A. e  e.  A  (
( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) ) )
27263ad2ant1 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F  e.  T  <->  ( F  e.  ( ( LDil `  K
) `  W )  /\  A. d  e.  A  A. e  e.  A  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) ) )
2812, 24, 27mpbir2and 893 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   [_csb 3056   ifcif 3539   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423   LDilcldil 29539   LTrncltrn 29540
This theorem is referenced by:  cdleme51finvtrN  29997  cdleme50ex  29998  cdlemg1a  30009  cdlemg1ltrnlem  30013
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544
  Copyright terms: Public domain W3C validator