Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50rn Unicode version

Theorem cdleme50rn 30001
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b  |-  B  =  ( Base `  K
)
cdlemef50.l  |-  .<_  =  ( le `  K )
cdlemef50.j  |-  .\/  =  ( join `  K )
cdlemef50.m  |-  ./\  =  ( meet `  K )
cdlemef50.a  |-  A  =  ( Atoms `  K )
cdlemef50.h  |-  H  =  ( LHyp `  K
)
cdlemef50.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef50.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs50.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef50.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme50rn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ran  F  =  B )
Distinct variable groups:    t, s, x, y, z,  ./\    .\/ , s,
t, x, y, z    .<_ , s, t, x, y, z    A, s, t, x, y, z    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    K, s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme50rn
StepHypRef Expression
1 cdlemef50.b . 2  |-  B  =  ( Base `  K
)
2 cdlemef50.l . 2  |-  .<_  =  ( le `  K )
3 cdlemef50.j . 2  |-  .\/  =  ( join `  K )
4 cdlemef50.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemef50.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemef50.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemef50.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef50.d . 2  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs50.e . 2  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdlemef50.f . 2  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
11 eqid 2284 . 2  |-  ( ( Q  .\/  P ) 
./\  W )  =  ( ( Q  .\/  P )  ./\  W )
12 eqid 2284 . 2  |-  ( ( v  .\/  ( ( Q  .\/  P ) 
./\  W ) ) 
./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  =  ( ( v  .\/  ( ( Q  .\/  P )  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
13 eqid 2284 . 2  |-  ( ( Q  .\/  P ) 
./\  ( ( ( v  .\/  ( ( Q  .\/  P ) 
./\  W ) ) 
./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )  =  ( ( Q  .\/  P )  ./\  ( (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) )
14 eqid 2284 . 2  |-  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u  .\/  ( a 
./\  W ) )  =  a )  -> 
c  =  ( if ( u  .<_  ( Q 
.\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q  .\/  P
) )  ->  b  =  ( ( Q 
.\/  P )  ./\  ( ( ( v 
.\/  ( ( Q 
.\/  P )  ./\  W ) )  ./\  ( P  .\/  ( ( Q 
.\/  v )  ./\  W ) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  [_ u  /  v ]_ (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) ) ) 
.\/  ( a  ./\  W ) ) ) ) ,  a ) )  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u  .\/  ( a 
./\  W ) )  =  a )  -> 
c  =  ( if ( u  .<_  ( Q 
.\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q  .\/  P
) )  ->  b  =  ( ( Q 
.\/  P )  ./\  ( ( ( v 
.\/  ( ( Q 
.\/  P )  ./\  W ) )  ./\  ( P  .\/  ( ( Q 
.\/  v )  ./\  W ) ) )  .\/  ( ( u  .\/  v )  ./\  W
) ) ) ) ) ,  [_ u  /  v ]_ (
( v  .\/  (
( Q  .\/  P
)  ./\  W )
)  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) ) ) 
.\/  ( a  ./\  W ) ) ) ) ,  a ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleme50rnlem 30000 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ran  F  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688    =/= wne 2447   A.wral 2544   [_csb 3082   ifcif 3566   class class class wbr 4024    e. cmpt 4078   ran crn 4689   ` cfv 5221  (class class class)co 5819   iota_crio 6290   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   Atomscatm 28720   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdleme50f1o  30002
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444
  Copyright terms: Public domain W3C validator