Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Unicode version

Theorem cdleme7a 30505
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 30510 and cdleme7 30511. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme7.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme7a  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  V ) )

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
2 cdleme7.v . . . 4  |-  V  =  ( ( R  .\/  S )  ./\  W )
32oveq2i 5871 . . 3  |-  ( F 
.\/  V )  =  ( F  .\/  (
( R  .\/  S
)  ./\  W )
)
43oveq2i 5871 . 2  |-  ( ( P  .\/  Q ) 
./\  ( F  .\/  V ) )  =  ( ( P  .\/  Q
)  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
51, 4eqtr4i 2308 1  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  V ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1625   ` cfv 5257  (class class class)co 5860   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   LHypclh 30246
This theorem is referenced by:  cdleme7d  30508  cdleme17a  30548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-iota 5221  df-fv 5265  df-ov 5863
  Copyright terms: Public domain W3C validator