Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7e Unicode version

Theorem cdleme7e 29566
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29567 and cdleme7 29568. (Contributed by NM, 8-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme7.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme7e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  =/=  ( 0. `  K ) )

Proof of Theorem cdleme7e
StepHypRef Expression
1 simp11l 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 hllat 28683 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  Lat )
4 simp2ll 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
5 eqid 2256 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 28609 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
84, 7syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  e.  ( Base `  K ) )
9 hlop 28682 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
10 eqid 2256 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
115, 10op0cl 28504 . . . . . 6  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
121, 9, 113syl 20 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( 0. `  K
)  e.  ( Base `  K ) )
13 cdleme4.j . . . . . 6  |-  .\/  =  ( join `  K )
145, 13latjcl 14083 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( 0. `  K )  e.  ( Base `  K
) )  ->  ( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
) )
153, 8, 12, 14syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
) )
16 cdleme4.g . . . . . 6  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
17 simp12l 1073 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
18 simp13l 1075 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
195, 13, 6hlatjcl 28686 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
201, 17, 18, 19syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
21 simp11 990 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
22 simp2rl 1029 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  e.  A )
23 cdleme4.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
24 cdleme4.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
25 cdleme4.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
26 cdleme4.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
27 cdleme4.f . . . . . . . . . 10  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
2823, 13, 24, 6, 25, 26, 27, 5cdleme1b 29545 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
2921, 17, 18, 22, 28syl13anc 1189 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  F  e.  ( Base `  K ) )
305, 13, 6hlatjcl 28686 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
311, 4, 22, 30syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
32 simp11r 1072 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  W  e.  H )
335, 25lhpbase 29317 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3432, 33syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  W  e.  ( Base `  K ) )
355, 24latmcl 14084 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  ( Base `  K ) )
363, 31, 34, 35syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  ( Base `  K
) )
375, 13latjcl 14083 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
383, 29, 36, 37syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( F  .\/  (
( R  .\/  S
)  ./\  W )
)  e.  ( Base `  K ) )
395, 24latmcl 14084 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  e.  (
Base `  K )
)
403, 20, 38, 39syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  e.  (
Base `  K )
)
4116, 40syl5eqel 2340 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  e.  ( Base `  K ) )
425, 13latjcl 14083 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  G  e.  ( Base `  K
) )  ->  ( R  .\/  G )  e.  ( Base `  K
) )
433, 8, 41, 42syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  e.  ( Base `  K ) )
445, 23, 24latmle2 14110 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
453, 20, 34, 44syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  W )
4626, 45syl5eqbr 3996 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  U  .<_  W )
47 simp2lr 1028 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  R  .<_  W )
48 nbrne2 3981 . . . . . . . 8  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4948necomd 2502 . . . . . . 7  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  R  =/=  U
)
5046, 47, 49syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  =/=  U )
51 simp12 991 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
52 simp31 996 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
5323, 13, 24, 6, 25, 26lhpat2 29364 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
5421, 51, 18, 52, 53syl112anc 1191 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  U  e.  A )
55 eqid 2256 . . . . . . . 8  |-  (  <o  `  K )  =  ( 
<o  `  K )
5613, 55, 6atcvr1 28736 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
571, 4, 54, 56syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
5850, 57mpbid 203 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R (  <o  `  K
) ( R  .\/  U ) )
59 hlol 28681 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
601, 59syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  OL )
615, 13, 10olj01 28545 . . . . . 6  |-  ( ( K  e.  OL  /\  R  e.  ( Base `  K ) )  -> 
( R  .\/  ( 0. `  K ) )  =  R )
6260, 8, 61syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  =  R )
63 simp2l 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
64 simp2r 987 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
65 simp32 997 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  .<_  ( P  .\/  Q ) )
6623, 13, 24, 6, 25, 26, 27, 16cdleme5 29559 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )
6721, 17, 18, 63, 64, 65, 66syl132anc 1205 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )
6823, 13, 24, 6, 25, 26cdleme4 29557 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
6921, 17, 18, 63, 65, 68syl131anc 1200 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  =  ( R 
.\/  U ) )
7067, 69eqtrd 2288 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  =  ( R 
.\/  U ) )
7158, 62, 703brtr4d 3993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) ) (  <o  `  K )
( R  .\/  G
) )
725, 55cvrne 28601 . . . 4  |-  ( ( ( K  e.  HL  /\  ( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
)  /\  ( R  .\/  G )  e.  (
Base `  K )
)  /\  ( R  .\/  ( 0. `  K
) ) (  <o  `  K ) ( R 
.\/  G ) )  ->  ( R  .\/  ( 0. `  K ) )  =/=  ( R 
.\/  G ) )
731, 15, 43, 71, 72syl31anc 1190 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  =/=  ( R  .\/  G ) )
74 oveq2 5765 . . . 4  |-  ( ( 0. `  K )  =  G  ->  ( R  .\/  ( 0. `  K ) )  =  ( R  .\/  G
) )
7574necon3i 2458 . . 3  |-  ( ( R  .\/  ( 0.
`  K ) )  =/=  ( R  .\/  G )  ->  ( 0. `  K )  =/=  G
)
7673, 75syl 17 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( 0. `  K
)  =/=  G )
7776necomd 2502 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  =/=  ( 0. `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   0.cp0 14070   Latclat 14078   OPcops 28492   OLcol 28494    <o ccvr 28582   Atomscatm 28583   HLchlt 28670   LHypclh 29303
This theorem is referenced by:  cdleme7ga  29567
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307
  Copyright terms: Public domain W3C validator