Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Unicode version

Theorem cdleme9 29721
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  C and  F represent s1 and f(s) respectively. In their notation, we prove f(s)  \/ s1 = q  \/ s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l  |-  .<_  =  ( le `  K )
cdleme9.j  |-  .\/  =  ( join `  K )
cdleme9.m  |-  ./\  =  ( meet `  K )
cdleme9.a  |-  A  =  ( Atoms `  K )
cdleme9.h  |-  H  =  ( LHyp `  K
)
cdleme9.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme9.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme9.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme9.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme9.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme9.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme9.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme9.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme9.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme9.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 29699 . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  C ) )
109oveq1i 5830 . 2  |-  ( F 
.\/  C )  =  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )
11 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  HL )
12 simp1 955 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp21 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp23l 1076 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  A )
15 hllat 28832 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
1611, 15syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  Lat )
17 eqid 2284 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1817, 4atbase 28758 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1914, 18syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  ( Base `  K
) )
20 simp21l 1072 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  A )
2117, 4atbase 28758 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2220, 21syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  ( Base `  K
) )
23 simp22 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  A )
2417, 4atbase 28758 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2523, 24syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  ( Base `  K
) )
26 simp3 957 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
2717, 1, 2latnlej1l 14171 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  =/=  P )
2827necomd 2530 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  P  =/=  S )
2916, 19, 22, 25, 26, 28syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
301, 2, 3, 4, 5, 8cdleme9a 29719 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
3112, 13, 14, 29, 30syl112anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  A )
321, 2, 3, 4, 5, 6, 17cdleme0aa 29678 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
3312, 20, 23, 32syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  U  e.  ( Base `  K
) )
3417, 2latjcl 14152 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3516, 19, 33, 34syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3617, 2, 4hlatjcl 28835 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  ( Q  .\/  C
)  e.  ( Base `  K ) )
3711, 23, 31, 36syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  e.  ( Base `  K
) )
381, 2, 4hlatlej2 28844 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  C  .<_  ( Q  .\/  C ) )
3911, 23, 31, 38syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( Q  .\/  C
) )
4017, 1, 2, 3, 4atmod4i1 29334 . . . 4  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  ( S  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  C )  e.  ( Base `  K
) )  /\  C  .<_  ( Q  .\/  C
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4111, 31, 35, 37, 39, 40syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4217, 2, 4hlatjcl 28835 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
4311, 20, 14, 42syl3anc 1182 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
44 simp1r 980 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  H )
4517, 5lhpbase 29466 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4644, 45syl 15 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  ( Base `  K
) )
471, 2, 4hlatlej2 28844 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  S  .<_  ( P  .\/  S ) )
4811, 20, 14, 47syl3anc 1182 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  .<_  ( P  .\/  S
) )
4917, 1, 2, 3, 4atmod3i1 29332 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( P  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  S  .<_  ( P  .\/  S
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
5011, 14, 43, 46, 48, 49syl131anc 1195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
51 simp23r 1077 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  W )
52 eqid 2284 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
531, 2, 52, 4, 5lhpjat2 29489 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  -> 
( S  .\/  W
)  =  ( 1.
`  K ) )
5412, 14, 51, 53syl12anc 1180 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  W )  =  ( 1. `  K
) )
5554oveq2d 5836 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( S  .\/  W ) )  =  ( ( P  .\/  S )  ./\  ( 1. `  K ) ) )
56 hlol 28830 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
5711, 56syl 15 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  OL )
5817, 3, 52olm11 28696 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
5957, 43, 58syl2anc 642 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
6050, 55, 593eqtrrd 2321 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
) )
618oveq2i 5831 . . . . . . 7  |-  ( S 
.\/  C )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
)
6260, 61syl6reqr 2335 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  C )  =  ( P  .\/  S
) )
6362oveq1d 5835 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  C
)  .\/  U )  =  ( ( P 
.\/  S )  .\/  U ) )
6417, 4atbase 28758 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  ( Base `  K
) )
6531, 64syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  ( Base `  K
) )
6617, 2latj32 14199 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  C  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  U )  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
6716, 19, 33, 65, 66syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
682, 4hlatj32 28840 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
6911, 20, 14, 23, 68syl13anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
7017, 2latjcom 14161 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
7116, 25, 43, 70syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
726oveq2i 5831 . . . . . . . . 9  |-  ( P 
.\/  U )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)
7317, 2, 4hlatjcl 28835 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
7411, 20, 23, 73syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
751, 2, 4hlatlej1 28843 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
7611, 20, 23, 75syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  .<_  ( P  .\/  Q
) )
7717, 1, 2, 3, 4atmod3i1 29332 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
7811, 20, 74, 46, 76, 77syl131anc 1195 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
791, 2, 52, 4, 5lhpjat2 29489 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
8012, 13, 79syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  W )  =  ( 1. `  K
) )
8180oveq2d 5836 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  Q )  ./\  ( 1. `  K ) ) )
8217, 3, 52olm11 28696 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8357, 74, 82syl2anc 642 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8478, 81, 833eqtrd 2320 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
8572, 84syl5eq 2328 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  U )  =  ( P  .\/  Q
) )
8685oveq1d 5835 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  Q )  .\/  S ) )
8769, 71, 863eqtr4d 2326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  U
)  .\/  S )
)
8817, 2latj32 14199 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  U )  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
8916, 22, 33, 19, 88syl13anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
9087, 89eqtrd 2316 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  U )
)
9163, 67, 903eqtr4d 2326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( Q  .\/  ( P  .\/  S ) ) )
9291oveq1d 5835 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  .\/  C ) 
./\  ( Q  .\/  C ) )  =  ( ( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) ) )
9317, 1, 3latmle1 14178 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
9416, 43, 46, 93syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  W )  .<_  ( P  .\/  S
) )
958, 94syl5eqbr 4057 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( P  .\/  S
) )
9617, 1, 2latjlej2 14168 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9716, 65, 43, 25, 96syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9895, 97mpd 14 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) ) )
9917, 2latjcl 14152 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10016, 25, 43, 99syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10117, 1, 3latleeqm2 14182 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  C )  e.  ( Base `  K
)  /\  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) )  <-> 
( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C
) ) )
10216, 37, 100, 101syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  C
)  .<_  ( Q  .\/  ( P  .\/  S ) )  <->  ( ( Q 
.\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) ) )
10398, 102mpbid 201 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) )
10441, 92, 1033eqtrd 2320 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( Q 
.\/  C ) )
10510, 104syl5eq 2328 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   1.cp1 14140   Latclat 14147   OLcol 28643   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem is referenced by:  cdleme9tN  29725  cdleme17a  29754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456
  Copyright terms: Public domain W3C validator