Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Unicode version

Theorem cdleme9 30418
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  C and  F represent s1 and f(s) respectively. In their notation, we prove f(s)  \/ s1 = q  \/ s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l  |-  .<_  =  ( le `  K )
cdleme9.j  |-  .\/  =  ( join `  K )
cdleme9.m  |-  ./\  =  ( meet `  K )
cdleme9.a  |-  A  =  ( Atoms `  K )
cdleme9.h  |-  H  =  ( LHyp `  K
)
cdleme9.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme9.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme9.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme9.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme9.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme9.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme9.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme9.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme9.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme9.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 30396 . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  C ) )
109oveq1i 6023 . 2  |-  ( F 
.\/  C )  =  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )
11 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  HL )
12 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp23l 1078 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  A )
15 hllat 29529 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
1611, 15syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  Lat )
17 eqid 2380 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1817, 4atbase 29455 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1914, 18syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  ( Base `  K
) )
20 simp21l 1074 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  A )
2117, 4atbase 29455 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2220, 21syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  ( Base `  K
) )
23 simp22 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  A )
2417, 4atbase 29455 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2523, 24syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  ( Base `  K
) )
26 simp3 959 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
2717, 1, 2latnlej1l 14418 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  =/=  P )
2827necomd 2626 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  P  =/=  S )
2916, 19, 22, 25, 26, 28syl131anc 1197 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
301, 2, 3, 4, 5, 8cdleme9a 30416 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
3112, 13, 14, 29, 30syl112anc 1188 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  A )
321, 2, 3, 4, 5, 6, 17cdleme0aa 30375 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
3312, 20, 23, 32syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  U  e.  ( Base `  K
) )
3417, 2latjcl 14399 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3516, 19, 33, 34syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3617, 2, 4hlatjcl 29532 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  ( Q  .\/  C
)  e.  ( Base `  K ) )
3711, 23, 31, 36syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  e.  ( Base `  K
) )
381, 2, 4hlatlej2 29541 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  C  .<_  ( Q  .\/  C ) )
3911, 23, 31, 38syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( Q  .\/  C
) )
4017, 1, 2, 3, 4atmod4i1 30031 . . . 4  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  ( S  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  C )  e.  ( Base `  K
) )  /\  C  .<_  ( Q  .\/  C
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4111, 31, 35, 37, 39, 40syl131anc 1197 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4217, 2, 4hlatjcl 29532 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
4311, 20, 14, 42syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
44 simp1r 982 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  H )
4517, 5lhpbase 30163 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4644, 45syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  ( Base `  K
) )
471, 2, 4hlatlej2 29541 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  S  .<_  ( P  .\/  S ) )
4811, 20, 14, 47syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  .<_  ( P  .\/  S
) )
4917, 1, 2, 3, 4atmod3i1 30029 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( P  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  S  .<_  ( P  .\/  S
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
5011, 14, 43, 46, 48, 49syl131anc 1197 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
51 simp23r 1079 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  W )
52 eqid 2380 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
531, 2, 52, 4, 5lhpjat2 30186 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  -> 
( S  .\/  W
)  =  ( 1.
`  K ) )
5412, 14, 51, 53syl12anc 1182 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  W )  =  ( 1. `  K
) )
5554oveq2d 6029 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( S  .\/  W ) )  =  ( ( P  .\/  S )  ./\  ( 1. `  K ) ) )
56 hlol 29527 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
5711, 56syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  OL )
5817, 3, 52olm11 29393 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
5957, 43, 58syl2anc 643 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
6050, 55, 593eqtrrd 2417 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
) )
618oveq2i 6024 . . . . . . 7  |-  ( S 
.\/  C )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
)
6260, 61syl6reqr 2431 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  C )  =  ( P  .\/  S
) )
6362oveq1d 6028 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  C
)  .\/  U )  =  ( ( P 
.\/  S )  .\/  U ) )
6417, 4atbase 29455 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  ( Base `  K
) )
6531, 64syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  ( Base `  K
) )
6617, 2latj32 14446 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  C  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  U )  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
6716, 19, 33, 65, 66syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
682, 4hlatj32 29537 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
6911, 20, 14, 23, 68syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
7017, 2latjcom 14408 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
7116, 25, 43, 70syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
726oveq2i 6024 . . . . . . . . 9  |-  ( P 
.\/  U )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)
7317, 2, 4hlatjcl 29532 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
7411, 20, 23, 73syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
751, 2, 4hlatlej1 29540 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
7611, 20, 23, 75syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  .<_  ( P  .\/  Q
) )
7717, 1, 2, 3, 4atmod3i1 30029 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
7811, 20, 74, 46, 76, 77syl131anc 1197 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
791, 2, 52, 4, 5lhpjat2 30186 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
8012, 13, 79syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  W )  =  ( 1. `  K
) )
8180oveq2d 6029 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  Q )  ./\  ( 1. `  K ) ) )
8217, 3, 52olm11 29393 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8357, 74, 82syl2anc 643 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8478, 81, 833eqtrd 2416 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
8572, 84syl5eq 2424 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  U )  =  ( P  .\/  Q
) )
8685oveq1d 6028 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  Q )  .\/  S ) )
8769, 71, 863eqtr4d 2422 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  U
)  .\/  S )
)
8817, 2latj32 14446 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  U )  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
8916, 22, 33, 19, 88syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
9087, 89eqtrd 2412 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  U )
)
9163, 67, 903eqtr4d 2422 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( Q  .\/  ( P  .\/  S ) ) )
9291oveq1d 6028 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  .\/  C ) 
./\  ( Q  .\/  C ) )  =  ( ( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) ) )
9317, 1, 3latmle1 14425 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
9416, 43, 46, 93syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  W )  .<_  ( P  .\/  S
) )
958, 94syl5eqbr 4179 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( P  .\/  S
) )
9617, 1, 2latjlej2 14415 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9716, 65, 43, 25, 96syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9895, 97mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) ) )
9917, 2latjcl 14399 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10016, 25, 43, 99syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10117, 1, 3latleeqm2 14429 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  C )  e.  ( Base `  K
)  /\  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) )  <-> 
( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C
) ) )
10216, 37, 100, 101syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  C
)  .<_  ( Q  .\/  ( P  .\/  S ) )  <->  ( ( Q 
.\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) ) )
10398, 102mpbid 202 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) )
10441, 92, 1033eqtrd 2416 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( Q 
.\/  C ) )
10510, 104syl5eq 2424 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   Basecbs 13389   lecple 13456   joincjn 14321   meetcmee 14322   1.cp1 14387   Latclat 14394   OLcol 29340   Atomscatm 29429   HLchlt 29516   LHypclh 30149
This theorem is referenced by:  cdleme9tN  30422  cdleme17a  30451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153
  Copyright terms: Public domain W3C validator