Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9taN Unicode version

Theorem cdleme9taN 29724
Description: Part of proof of Lemma E in [Crawley] p. 113.  X represents t1, which we prove is an atom. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme8t.l  |-  .<_  =  ( le `  K )
cdleme8t.j  |-  .\/  =  ( join `  K )
cdleme8t.m  |-  ./\  =  ( meet `  K )
cdleme8t.a  |-  A  =  ( Atoms `  K )
cdleme8t.h  |-  H  =  ( LHyp `  K
)
cdleme8t.x  |-  X  =  ( ( P  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme9taN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( T  e.  A  /\  P  =/=  T ) )  ->  X  e.  A
)

Proof of Theorem cdleme9taN
StepHypRef Expression
1 cdleme8t.l . 2  |-  .<_  =  ( le `  K )
2 cdleme8t.j . 2  |-  .\/  =  ( join `  K )
3 cdleme8t.m . 2  |-  ./\  =  ( meet `  K )
4 cdleme8t.a . 2  |-  A  =  ( Atoms `  K )
5 cdleme8t.h . 2  |-  H  =  ( LHyp `  K
)
6 cdleme8t.x . 2  |-  X  =  ( ( P  .\/  T )  ./\  W )
71, 2, 3, 4, 5, 6cdleme9a 29719 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( T  e.  A  /\  P  =/=  T ) )  ->  X  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   lecple 13211   joincjn 14074   meetcmee 14075   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-lhyp 29456
  Copyright terms: Public domain W3C validator